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Abstract. We compared the performance of several supervised classi-
fication algorithms on multi-source remotely sensed images. Apart from
the Multi-Layer Perceptron, K-Nearest-Neighbour and Radial Basis Func-
tion network approaches, we looked more in detail at the Support Vec-
tor Machine classifier, which recently showed promising results in our
setting. In particular, it is able to provide meaningful answers for the
analysis of mixed pixels. They correspond to areas on the ground that
comprise more than one distinct class, representing a major challenge for
the interpretability of the final land-cover maps. To assess their impact,
we performed a rejection-based analysis, allowing classifiers to refuse an-
swers on pixels they can not associate mainly with one class.
The experimental results lead to the conclusion that the 1vs1 SVM ap-
proach with a linear kernel (using Bradley-Terry coupling) has to be pre-
ferred over all other classification algorithms examined, both in terms of
accuracy as well as ease of visual interpretation.

1 Introduction

Recently, a new kind of algorithms to produce land cover mappings has caught
the eye of the remote sensing community: Support Vector Machines [1,2]. These
SVMs calculate distances between samples in a higher-dimensional so-called ker-
nel space, and therefore have an advanced ability to discriminate between classes.
Also, they are especially known to work with a limited number of training data,
which is especially important in our context, since the labelling of ground pixels
is expensive. To evaluate the usefullness of SVMs in land cover mapping, we
compared their performance to a number of well-known supervised classification
algorithms: Radial Basis Function Networks, Multi-Layer Perceptrons, and K-
Nearest-Neighbour. A special focus of this work is to explore the behaviour of
the approaches when presented with so-called mixed pixels. Those are areas on
the ground which can not be subdivided into smaller parts due to main sen-
sor resolution, but which comprise several different land cover classes. They are
abundant in remote sensing applications and present a challenge because assign-
ing them to one class in the map leads to misinterpretations [3]. Moreover, few



classifiers are capable of producing correct mixed answers. Because an encom-
passing analysis of the nature of the mixed answers is not feasible, we performed
a rejection-based study. That is, the algorithms were allowed to reject an in-
creasing number of test pixels, related to the degree of mixing in the answer
to each pixel. Looking at the resulting accuracy on the not-rejected test set,
and the distribution of rejected pixels, we were able to draw conclusions on the
suitability of the different classification algorithms. The most important result is
the superiority of the 1vs1 linear SVM approach, when Bradley-Terry coupling
is used instead of the usual simple voting.

2 Satellite data

The area of interest is a coastal plain in the southern part of Italy, located in the
alluvial plain of the Salerno Gulf. The area is densely inhabited for the fertility
of the land since Greek-Roman times. Land use is primarily agricultural, but
during the last sixty years an urbanisation phenomenon occurred, giving rise
to a very indented and complex landscape. Consequently, the principal types of
land covers are agricultural fields (both fallow fields and crop covered ones), rural
fabrics (greenhouses), sea water, a coniferous wood strip along the coastline, and
small urban areas made up of discontinuous fabric mixed with vegetation3.

For this study, we take into account two types of multi-spectral satellite
imagery[4]: one captured by the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) on NASA’s Terra satellite, and the other cap-
tured by IKONOS 2, a commercial earth observation satellite which offers high
resolution imagery.

From the Aster data, we used an image taken in winter 2004. One scalar
value was extracted for each of the nine bands chosen: going from the visible
(bands 1-3, 15 m/pixel resolution) to the short wave infrared region (bands 6-9,
30 m/pixel resolution) of the electromagnetic spectrum. All data was resized to
a resolution of 15 m/pixel.

Secondly, textural features extracted from Ikonos images were introduced.
This was done in order to add intra-pixel spatial information to the Aster spectral
data. Our textural characteristics are based on the well known Grey-Level Co-
occurrence Matrix (GLCM), widely used in land-cover mapping [5]. The GLCMs
were computed on two different Ikonos data sets: the panchromatic band (a black
and white imagery of 1 m/pixel resolution, sensitive to all visible radiation) and
the band ratio between near-infrared and red (4 m/pixel resolution, resized to
1 m/pixel ), which in remote sensing literature is considered as a reasonable
way to avoid shadows. A moving window of 15x15 Ikonos pixels is used in the
computation of the GLCM, since a window of such dimensions covers the same
spatial area as one Aster pixel. Among the several statistical measures which
can be extracted from the GLCM to describe specific textural characteristics of
3 For our study, we hence defined the following l = 7 classes: vegetated agricultural

fields, buildings, pine forest, urban green, sea shore, not vegetated agricultural fields,
and water.



the image [6], we chose the following two: the Correlation function computed on
the Ikonos panchromatic band and the Energy function computed on the Ikonos
band ratio (see above). These particular choices for the statistical measures
provide the best classification performances for our dataset.

Summing up, our data vectors are made up of 11 components, the first 9
standing for the spectral information (taken from Aster bands) and the last 2
representing textural measures extracted from Ikonos images.

3 Rejection of pixels

The supervised classifiers we consider take a training set T , consisting of pairs
of training samples z in the feature space IRN with associated training labels y
that detail to which of the l classes the sample belongs:

T = {(zµ, yµ )| µ = 1, . . . ,M, yµ ∈ {1, . . . , l} }

Being trained on the data set T , a classifier can now be presented with an
hitherto unseen sample, and will output an answer o ∈ [0, 1]l,

∑l
d=1 od = 1,

that reflects to what degree the classifier thinks the sample belongs to each class.
This answer can be interpreted as a probability.

In a rejection setting, a classifier is allowed to reject a test sample presented
to him, that is to refuse to take a decision about the class of the sample. In
classical machine learning settings, this is done to increase the classification
accuracy on the not-rejected samples. An answer which the classifier says he is
not sure about, where this can be deducted from the structure of the answer [7],
or where different classifiers disagree[8], is rejected. In a remote sensing context,
there is a problem with so-called mixed pixels. For those, the classifier’s output
o is not predominantly in favour of one class, but gives probabilities to multiple
ones. These pixels can not be marked as clearly belonging to a certain class. An
example might be an area containing both buildings and vegetation. The goal is
to detect and flag mixed pixels.

The rejection method we decided to use is based on the maximum probability
entry of the answer o to a sample:

reject if (max
d

od < threshold) (1)

4 Classifiers

The goal of this article is to compare the performance of several supervised clas-
sification algorithms on satellite images. In the following, the classifiers we used
will be presented briefly. For an in-depth introduction to each of the architec-
tures, as well as their relations, please refer to [9].

The Multi Layer Perceptron (MLP, [10]) is a network of perceptrons, in our
case with an input layer, a hidden layer, and an output layer which yields the
mixed answer for each pixel, the probabilities. In the hidden layer with a total



of 70 neurons the hyperbolic tangent sigmoid transfer function is applied, in the
output layer a linear transfer function is used. Optimisation was accomplished
using backpropagation [11] with a maximum of 20 epochs.

When presented with a test sample x the weighted K-Nearest-Neighbour
algorithm (KNN, [12]) employed looks for the K = 200 nearest samples ni
in the training data, and answers with a weighted mean of their labels. The
weighting function w is a Gaussian:

wi(x) = exp

(
−‖x− ni‖

2

σ

)
The spread σ > 0 was set for each sample in relation to the median of all its K
neighbour distances.

We also used the very powerful Radial Basis Function Network classifier
(RBF, [13]), a network reconstructing the decision surfaces using Gaussian
nodes. The number of kernels in the RBF network was set to 69 using a simple
heuristic formula, their position determined by running a fuzzy c-means algo-
rithm [14] on the training data. The individual variance of the kernels was set
based on an an experimental observation of Breiman [15], which allows to have
only one parameter to optimise for the whole net.

Support Vector Machines (SVMs) have become a popular method in pattern
classification and were originally developed for the discrimination of two-class
problems [16]. They work by projecting the data into a higher dimensional fea-
ture space using kernel functions, then finding the hyperplane that separates the
two classes while providing the widest margin in which no sample points lie (see
[17] or [9] for an introduction). The kernels we used are of linear nature, or again
Radial Basis Functions. Being in a multi-class setting, we had to pay special at-
tention to the possibilities of extending the originally binary SVMs. There has
been quite some research activity in this field recently [18], and architectures like
1vs1 or 1vsAll are widely used nowadays (see [19] for a comparison). In a recent
work of ours [20], we dealt with the issue of accepting, and more importantly
producing, soft labels. Below, we will briefly present the solutions we decided to
explore in the current application, and elaborate a bit on the 1vs1 case where
no ready procedure existed.

In the current case, we have samples of l = 7 different classes in the data.
The 1vsAll approach (also called One vs Rest) now builds l different SVMs, each
of which is able to separate one specific class from all the others. Presented with
a new sample x, each SVMi will answer with the distance di(x), i = 1 . . . l,
that this sample has to its hyperplane. To transfer this distances to soft output
answers oi that can be interpreted as probabilities, we make use of a sigmoid
function (Fermi like), as recommended in [21]:

oi( di(x) ) = 1/(1 + exp(−ATi di(x) +Bi)), i = 1, . . . , l

The parameters Ai ∈ IRN and Bi ∈ IR are estimated for each SVMi to minimise
the mean squared error on the training data between the original label and the



sigmoid output, using a batch gradient descent technique. Details can be found
in our article [20] mentioned above.

The solution is not so straightforward in the 1vs1 approach. Here, a SVMi

is built for every pair of classifiers (resulting in
(
l
2

)
= 21 machines in our case).

To get the desired l-dimensional soft output, the technique employed in most
cases today, for example in [1], is as follows: using an indicator function, trans-
form each of the answers di into a vote for one of the two classes distinguished
by the current machine i. Then sum those votes per class, and normalise4 the
resulting soft label. This method does not have a bad performance, but some
limitations (detailed in section 5) as it does deliberately not take into account
the distance information provided by the values di. To heal this issue, one can
proceed similarly to the 1vsAll case and use a sigmoid, preferably with the same
parameter for all pairs, to transfer the distances to soft answers, which can then
be summed up and normalised.

But even then, the class-pair information provided by the SVMi is not used.
This can be addressed by the technique of pairwise coupling, based on the statis-
tical Bradley-Terry model [22]. It uses initial estimations for the pairwise prob-
abilities (derived via sigmoid from the distances di), and in an iterative process
produces soft labels that take into account the coupled distance information. In
our experiment, this results in answers with a much lower entropy than without
coupling. An introduction to and many interesting theoretical conclusions on
pairwise coupling in classification can be found in [23].

A short note on choosing the (universal) scaling parameter for the sigmoid
transfer function in the 1vs1 SVMs: unfortunately, there is no perfect choice valid
for all data sets. To really get those 2-3 percent points in accuracy increase, and
ensure an appropriate hillyness of the coupled answers, the parameter has to be
determined experimentally. In our case, 2 turned out to be the best choice. On
the other hand, when looking at the rejection versus accuracy curves, the plots
for different choices of this parameter were very similar.

5 Results

One aspect in the comparison of the different algorithms is to look at their
accuracy on the spatially separate test set. That is, in the following we will
concentrate on what portion of the pixels in the test data is correctly classified,
allowing for first conclusions. The initial accuracies (that is, when no test sample
points are rejected) of the different classifiers are shown in Tab. 1, and here the
SVM based architectures clearly are to be preferred. As mentioned above, the
goal of our experiments was to assess the behaviour of the classifiers once they
were allowed to reject an (increasing) portion of the test samples. This is plotted
in Fig. 1 for all the classifiers. As the rejection rate is not a direct parameter
of the algorithms, we simply raised the rejection threshold from 0 to 1 in steps
of 0.01, and noted the respective rates. Looking at the upper graph, the SVM

4 With normalise we mean to make the values of each label to sum up to one.



Table 1. Accuracy of the different supervised learning algorithms studied, when no
samples were allowed to be rejected.

Classifier Initial Accuracy

RBF 0.88

MLP 0.90

KNN 0.92

SVM, 1vsAll, RBF 0.92

SVM, 1vsAll, Linear 0.93

SMV, 1vs1, coupled Fermis, RBF 0.91

SMV, 1vs1, coupled Fermis, Linear 0.95

SVM, 1vs1, coupled votes, RBF 0.93

SVM, 1vs1, coupled votes, Linear 0.95

steadily provides the highest accuracy on the test set. The RBF has the worst
initial performance, and also the slowest increase of accuracy. Interestingly, the
relatively simple KNN algorithm has a good initial accuracy, and raises very
fast, so that at a level of rejection of 15% it reaches the performance of the
champion SVM. Hence, being much easier to implement, the KNN solution might
be to preferred in some applications. Not shown in the graph, the first algorithm
to reach a perfect accuracy of 1 is the MLP, at the price of rejecting 43% of
the samples. The accuracies of the different SVM architectures and kernels,
also plotted against a rising rejection rate, can be found in the lower part of
Fig. 1. The results do allow only a few conclusions: the 1vs1 architecture with
coupled Fermis is the clear winner, always yielding the highest accuracy. And
the approaches based on RBFs exhibit a similar behaviour for both the 1vs1 and
1vsAll architecture.

It must be stressed again that the performance of SVMs is highly dependent
on selecting the appropriate kernel and its parameters for each data set. Without
empirical proof, based solely on experience gained in a range of applications,
it seems to us that when properly tuned, the 1vs1 architecture (with coupled
Fermis) will always provide a higher accuracy then the 1vsAll scheme.

In 1vs1 SVMs, the single most common method is to use only the votes of the
individual classifiers for coupling, but not the transformed distances. And as our
results, and experiments in [23] show, the performance in terms of accuracy is
nearly identical to the one achieved using coupled sigmoids. Yet, in the sample-
rejection scenario, we observed a strange behaviour in the machines with coupled
votes: the rejection rate would go from nearly 0 to around 80% at a certain
threshold, which makes this architecture useless in this context. Examining the
answers to the 628 test samples closer, we found that there are only 79 different
variants of the vote matrix, leading to 77 different coupled answers, with only
13 different maxima. As ten of those maxima even lie in the narrow range of
[0.74 0.76], it is immediately clear that a smooth scaling of the tradeoff accuracy
versus rejection rate is not possible. Whereas coupled transformed distances lead
to completely individual answers, forcing the SVMs to answer in hard votes in
the experiment limited the variance in the answers to a tiny fraction of the



Fig. 1. Accuracy of various supervised classifiers, at certain rates of rejection of test
samples. The upper plot shows performances across several different architectures (in-
cluding the best SVM), the lower one across different SVM approaches.



possible answer space, which contains 221 different elements. Hence, 1vs1 SVMs
based on coupled votes should not be used for this purpose.

A visual analysis of the answers on the whole dataset essentially confirms the
effectiveness of the 1vs1 SVM approach. The distribution of the rejected pixels is
very sparse and indented for the RBF, MLP, KNN, and 1vsAll SVMs. Whereas
with the 1vs1 SVMs, both using a linear and a RBF kernel, the rejected pixels
are gathered in more compact regions. Using the RBF kernel, however, the 1vs1
SVMs, like the non-SVM classifiers, exhibit a clear overestimation of the urban
green class.

To allow the reader a visual comparison, the land cover mappings produced
by a 1vs1 SVM and a 1vsAll SVM are depicted in Fig. 2. The differences in the
distribution of rejected (black) pixels mentioned above is clearly visible. Also,
in the 1vsAll case, one can observe an overestimation of the greenhouses (white
pixels on the map) to the detriment of not vegetated lands (brown pixels on the
map), an error which we found, despite good overall accuracies on the test set,
common to all the classifiers except for the 1vs1 SVM architecture.

Fig. 2. The figure shows a portion of the final map provided by the 1vsAll SVM (RBF
kernel, upper map), and the 1vs1 SVM (Linear kernel, lower map). Black pixels are
spread in a compact way with the 1vs1 architecture, enabling an easier interpretation
in successive analysis. Note that this figure appears in colour in the electronic version
of this article.



6 Conclusions

In this work, we compared the capabilites of different supervised classification
algorithms to produce meaningful land-cover mappings. Of special interest was
the performance of the as yet little explored Support Vector Machine approach,
as well as the behaviour of all classifiers when being presented with mixed pixels
that contain several land-cover classes on the ground.

The results yielded insights into the comparative performance of different
SVM architectures, leading us to the conclusion that the 1vs1 SVMs are to be
preferred for best classification accuracies, but are also sensitive to the choice of
kernel. The performance of SVM approaches using a RBF kernel is rather stable.

Overall, the best results are provided by the 1vs SVM with a linear kernel: it
yields the highest accuracy on the test set, as well as a distribution of rejected
pixels on the output map that is much more clear and interpretable than with all
other approaches. Looking at the rejection behaviour, it is clear that the fuzzy
answers in the 1vs1 architecture have to be produced using a sigmoid transfer
function and Bradley-Terry coupling, instead of the usual votes.

For the non-SVM approaches, the relatively simple K-Nearest-Neighbour has
the highest classification accuracy.

Our future research in this area will entail incorporating spectral and textural
information from higher-resolution images to further improve the meaningfulness
of mixed SVM answers, allowing for a richer presentation of the land-cover map.
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