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Abstract. In this paper we investigate the performance of the Koho-
nen’s self organizing map (SOM) as a strategy for the analysis of multi-
spectral and multi-resolution remote sensed images.
The paper faces the problem of data fusion, by extracting and combining
multi-spectral and textural features. Moreover we address the problem
of low-quantity and low-quality of labelled pixels in the training set,
investigating a two-step strategy: in the first step (unsupervised training)
we use a large unlabelled data set to train a SOM, in the second step a
limited number of labelled data is used to assign each SOM node to one
informative class. Self Organized Maps are shown to be effective way to
discover the intrinsic structure of data.
When the SOM is used as a classifier, as here, a majority voting technique
is usually used to associate nodes with informative classes. This proce-
dure allows to obtain a SOM output grid which contains labelled and
unlabelled nodes. Particularly in the framework of remote sensing, the
unlabelled nodes may be important, since they are associated with new
classes present in the image, or with the so-called mixed pixels, which
represent an area on the ground composed of more then one land-cover
class. Comparing the results of the proposed SOM-based strategy and
the results of a supervised network such as SVM we show that the unla-
belled nodes of the SOM are associated with high percentage to mixed
pixels.

1 Introduction

The dimensionality, the amount, and the heterogeneity of the remotely sensed
data available today requires advanced and innovative techniques to extract
information and thematic maps useful for environmental monitoring. In the last
years innovative methods, not strictly statistical, have been proposed, and among
them neural network strategies are very promising [1], [2], [3], Benedictson]. They



are especially usefull for multisource data, since the whole multiple source data
set is usually very difficult to model by statistical methods. Neural Network based
classification methods allow to include as input both spectral and spatial (texture
and context) features. Textural information was found to improve noticeably the
classification ability in many problems, when the spatial scale of the texture is
proper [4].

This study focuses on cluster detection, visualization, and land-cover classi-
fication of multi-spectral multi-source remote sensed images with two different
spatial resolution: an high resolution image registered by IKONOS sensor (4
meters/pixel) and low-medium resolution image registered by ASTER sensor
(15 meters/pixel). For the image taken from ASTER we also have a manually
generated label map (ground truth dataset) for comparison. The labels indicate
different land cover types, as detailed in Chap. 2.

To exploit the high-resolution image, we extracted from the high-spatial res-
olution images some textural features, using the Gray-Level Co-occurrence Ma-
trix [5] [6], and merged them with spectral information of the middle-spatial
resolution image. As we will see below, the combination of spectral and spa-
tial information is especially valuable for land-cover classification systems in the
areas with complex landscapes.

To discover and visualize the intrinsic cluster structure of the data, and to
see how the extracted features can be related to the land cover classes present in
the image, we first apply the Self Organized Map (SOM) with a bi-dimensional
SOM lattice, and then using a small number of labelled samples, we merge SOM
nodes into meaningfull classes.

This semi-supervised classification strategy, has some advantages over super-
vised strategies, when, as in the case under consideration, the available labelled
samples have low accuracy or may be non-exhaustive.

Indeed, in many remote sensing applications the number of available labelled
training samples is not large, since gathering reliable prior information is often
too expensive both in terms of economic costs and time. Besides, concerning the
quality of training data, there are many problems in remote sensing applications,
from the problem of mixed pixels, to the problem of the correlation among
training patterns taken from the same area, to the exhaustive definition of the
classes. Non exhaustive definition of the classes present in the image may happen
when there is not enough a priori information on the territory composition, and
in such a case an unsupervised strategy such as SOM, which does not use any a
priori information, may be useful to detect the new classes. Mixed pixels, which
are often abundant, are pixels that comprised more then a single class. As a
pixel is an arbitrary spatial unit, it may represent an area on the ground which
comprises more than one discrete land cover class, for example water and pine
wood. Alternatively, it may happen that the classes overlap gradually with many
areas of mixed class compositions, particularly near imprecise boundaries.

In this paper we address these problems investigating a two-step semisuper-
vised strategy, which makes use of unlabelled data to train a Self Organized Map,
and uses a limited number of labelled data to associate the nodes to informa-



tive classes. When the SOM is used as a classifier, a majority voting technique
is usually used to associate its nodes with informative classes. This technique,
however, cannot guarantee that every node in the output layer will be labelled,
and thus will produce unclassified pixels in the final map.

We focus on these unlabelled nodes, that is nodes of the SOM map with which
none of the labelled pixels is associated to. These unlabelled nodes come from
the presence of mixed pixels or non-exhaustive class definition. Our approach
associate pixels with a high degree of mixing with unlabelled SOM nodes. Pure
pixels fall into other nodes. The distinction between pure and mixed pixels is
carried out both visually and with the help of a SVM strategy.

The reminder of the paper is organized as follows: in Sect. 2 we describe the
multi-resolution and multi-spectral images and the feature extraction process.
From the high-resolution image, textural features are extracted and fused with
spectral features provided by the lower-resolution image. In section 3 the SOM
is applied, nodes are labelled with a majority vote criterion, and results are
discussed. In sec 4 the relations between SOM unlabelled nodes and the rejected
pixels of a SVM with rejection threshold is studied. In sec 5 conclusions are
drown.

2 Dataset and pre-processing

Two types of multi-spectral satellite imagery are considered: one captured by the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
on NASA’s Terra satellite, and the other captured by IKONOS 2, a commercial
earth observation satellite which offers high spatial resolution images. The Aster
multi-spectral images are from November 2004. We use the first nine bands of the
data set, going from the visible (bands 1-3, 15 m/pixel resolution) to the short
wave infrared region (bands 6-9, 30 m/pixel resolution) of the electromagnetic
spectrum. The bands 6-9 were processed for this study and resized to a resolution
of 15 m/pixel.

To determine the spatial information we realized some textural measures
(detailed in Chap. 2.1) working on Ikonos 2 images from January 2004. The
spatial resolution of the data is 4 meters for the visible bands (blue, green, red,
near-infrared) and 1 meter for the panchromatic band (grey-level image). In our
work we resized also the visible band at 1 meter/pixel resolution.

Both Aster and Ikonos images acquired have been radiometrically and geo-
metrically corrected, cross-calibrated and co-registered to allow multi-scale anal-
ysis.

The area of interest is a coastal plain in the southern part of Italy, located
in the alluvial plain of the Salerno Gulf. The area is densely inhabited for the
fertility of the land since Greek-Roman times: Poseidonia-Paestum is the most
renown archaeological site, but others are widespread in the area. Land use is pri-
marily agricultural, but during the last sixty years an urbanization phenomenon
has arisen, giving rise to a very indented and complex landscape. Consequently,
the principal types of land covers are agricultural fields (both fallow fields and



crop covered ones), rural fabrics (greenhouses), sea water, a coniferous wood
strip along the coastline, and small urban areas made up of discontinuous fabric
mixed with vegetation.

For the Aster image we have a manually generated label map (labelled
dataset) for comparison purposes. The labels indicate different land cover types.
Seven classes are considered: vegetated agricultural fields, buildings, pine forest,
urban green, sea-shore, not vegetated agricultural fields, and water. Among the
total number of 236985 pixels, each with a spatial resolution of 15 m, 1657 are
labelled. The SOM will be trained on the whole dataset, composed of 236985
vectors, each with 11 dimensions (9 Aster spectral bands and 2 textural features
coming from IKONOS). In the second step, the SOM nodes are labelled with
majority vote, using about 2/3 of the labelled dataset. Specifically, we divide the
labelled data set into a classification-set (1029 pixels), used to label the SOM
nodes, and a test-set (628 pixels) used to evaluate the percentage of correct clas-
sification of our strategy. The composition of the labelled set is shown in the
following table.

Table 1. The available set of labelled samples. The land cover classes are: Vegetated
land (1), Built up area (2), Pine wood (3), Urban green (4), Greenhouse (5), Not
vegetated land (6) and Water (7). Classification set is used to label the nodes of the
SOM with a majority vote strategy (see sect. 3), while the test set is used to evaluate
the percentage of correct classification and the confusion matrix (fig. 1 and 2)

Class number 1 2 3 4 5 6 7 TOT

Labelled set 249 188 226 251 273 233 238 1657

Classification set 145 90 162 159 166 144 163 1029

Test set 104 98 64 92 106 89 75 628

2.1 Feature extraction

In order to exploit the information that are available in two kinds of images we
extract textural features from Ikonos, and add it to spectral features obtained
from Aster.

Different textural features extracted from Ikonos images were introduced, in
order to add intra-pixel spatial information to Aster spectral data. The textural
features were computed on two different Ikonos data: the panchromatic band
(a grey-level imagery of 1 meter per pixel resolution, sensitive to all visible
radiation) and the band ratio between near-infrared and red (4 meters per pixel
resolution, resized at 1 meter per pixel), which in remote sensing literature is
considered a reasonable way to avoid shadows.

The spectral features were obtained from the well known Grey-Level Co-
occurrence Matrix (GLCM), widely used in land-cover mapping [7]. The Gray



Fig. 1. On the left: SOM with only spectral features (9 Aster bands), without Ikonos
information. Labelling of the SOM output nodes is based on a majority vote criterium
looking at the training samples. On the right: confusion matrix resulting from labelled
SOM. Columns, from left to right, corresponds to classes from 1 to 7, while the 8th
column refers to pixels belonging to unlabelled nodes. As shown here, 4% of the test
set, that is 27 pixels, are unclassified, since they belong unlabelled nodes.
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Level Co-occurrence Matrix is a standard technique for extracting texture char-
acteristics: distance as well as directional relationships among grey levels are
summarized in a GLCM, obtaining a measure of the probability of occurrence
of two grey levels separated by a given distance in a given direction. GLCM has
been used successfully in a variety of applications, including land-cover mapping,
crop discrimination and forest studies [4].

A moving window of 15 × 15 Ikonos pixels has been used in the computation
of GLCM matrix and variance, since a window of such dimensions cover the same
spatial area as one Aster pixel [8]. In the computation of the GLCM, data are
typically scaled to some fairly modest range of integers, (for exapmle 0-7 in this
work, such that the GLCM is a 8 × 8 matrix). After the GLCM is generated
for each direction (horizontal, vertical, left diagonal, and right diagonal), the
statistical measures are extracted and then the four directions are averaged to
remove directional effects. Among the several statistical measures which can
be extracted from the GLCM to describe specific textural characteristics of the
image [1], we chose four of them: Energy, Contrast, Homogeneity and Correlation
[9].

3 Application of Self-Organizing Maps

Supervised and unsupervised neural networks have become important methods
in the context of remotely sensed images analysis. In this framework, Kohonen’s
Self-Organizing Maps (SOM, [10]) play a fundamental role, giving the possibility
to detect relationships within large amounts of input patterns and to preserve
as well as possible the topology of the original space in a lower dimensional
output space, or SOM space. Moreover, the SOM algorithm and other neural



approaches are suitable for the incorporation of both spectral and non-spectral
data into the classification procedure.

The SOM used in this work is trained iteratively with a sequential algorithm,
the distance measure chosen is the Euclidean one, the lattice is bi-dimensional
with a local hexagonal structure, the weight vectors are updated with a gaussian
neighborhood kernel, and the number of nodes is 32.

The SOM algorithm carries out two important operations: (a) a clustering
of the input data into nodes; and (b) a local spatial ordering of the map in the
sense that the prototypes are ordered on the lattice such that similar inputs
belong to topographically close nodes. Such an ordering of the data facilitates
the understanding of data structures. The clustering performed by the SOM
becomes more visible by displaying the Euclidean distances between prototype
vectors of neighbouring nodes through grey levels on the map. The SOM gives
a good visualization of the data structure, by graphically depicting on the map
both the density of the data and the Euclidean distances between prototypes.

The first stage of the experiment was conducted with only the 9 Aster spectral
bands as input for the SOM network. After the learning phase, an arrangement
of the data on a 32-nodes output lattice is obtained. Looking a the distribution
of the labelled classification subset into the SOM nodes, we found that pixels of
different land-cover classes mostly falls in different nodes, and that some nodes
are not associated to any of the labelled pixels of the classification subset. It
means that the complete unlabelled dataset used to train the SOM contains also
vectors whose characteristics are different from the ones of the seven land-cover
classes. Such vectors are not present into the labelled dataset that we have used
for the classification stage.

In the classification stage, we associate a label with those SOM nodes into
which at least C labelled pixels fall. Association is accomplished using a ma-
jority vote technique. Setting threshold C equal to 3, there are 11 nodes of the
lattice which cannot be associated with any label. To evaluate the classification
performance, we compute the confusion matrix, on the test set, as shown in Fig.
1. The confusion matrix is computed using 8 classes, the 7 land cover classes and
the unlabelled-nodes class.

The percentage of correct classification achieved in this way is low, mainly
because in this first experiment we used only the ASTER spectral bands, without
exploiting the textural information extracted from Ikonos. The overall percent-
age of correct classification is 78.5% and the confusion matrix shows that main
errors occurs for class 2 (built-up area) and class 4 (urban green). When the two-
stage strategy described above is applied while adding textural information to
the spectral one, and in addition merging information at different spatial scales,
significant improvements are achieved.

Among all the possible textural features, we selected the ones who better
discriminate among the classes with major overlap in the spectral SOM map [11].
Therefore, we looked for texture measures which were more able to discriminate
class 2 (built-up area) and 4 (urban green) from the remaining classes.



Fig. 2. On the left: SOM trained with textural information, extracted from the Ikonos
bands,in addition to the spectral ones (9 Aster bands). On the right: confusion matrix
resulting from the labelled SOM.
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Introducing these two new inputs, in addition to the 9 Aster spectral bands,
the resulting SOM map is shown in Fig 2. As described in the previous section, we
project the labelled training subset on the SOM lattice, and label the SOM nodes
with a majority vote criterium (with C=3) as before. We see that the confusion
matrix, computed on the test subset, is considerably improved (compare Fig. 2),
with an overall accuracy percentage of 92.04% on the test set. Among the 32
nodes, 10 are unlabelled, 6 of them are totally empty of labelled data and 4 of
them contain less then C labelled pixels. The meaning of the unlabelled nodes
is investigated in the next section.

4 SOM Unlabelled nodes and mixed pixels

In this section we compare the two-stage strategy based on the SOM presented
above, with the results of a SVM used as a reference. The goal is to better un-
derstand the SOM results and particularly to characterize the unlabelled nodes.

The baseline classification of the pixels was accomplished using Support Vec-
tor Machines (SVMs, introduced in [12]) with a linear kernel, and a weighting
factor C for the slack variables of 0.1. Other than in previous approaches [13]
we employed the 1vs1-architecture, where a separate SVM is trained for each
pair of classes. The distance-valued outputs of each of those machines were then
converted into probabilities using a Fermi function, whose multiplicative vari-
able was set to 2 uniformly for all machines. Finally, those pairwise probabilities
were subjected to the iterative procedure of pairwise coupling according to the
Bradley-Terry model [14], as suggested in [15]. This results in mixed answers for
each pixel where the probabilities for each class are more distinguishable than
with the initial estimation.

In the following we analyse the projection of the data onto the SOM lattice,
using the output of the SVM as a fuzzy-label for pixels, where yn

k represent the



Fig. 3. On the left: Distribution of pixels rejected by the SVM classifier, on the SOM
lattice. The size of the red hexagons is directly related to the number of rejected pixels.
On the right: SOM labelled lattice, where each SOM node is associated with one of
the 7 land cover class, taking into account the SVM hard answers on the whole dataset
(236985 pixels). The circles emphasize the unlabelled nodes of Fig. 2 that, owing to
the SVM analysis, could be assigned to one of the 7 pure land cover classes.

membership of pixel xn to class k. So, way we have a SVM-fuzzy-label for each
pixel, and can investigate the 10 unlabelled SOM nodes.

First of all, associating each pixel xn with the class k which has the highest
value of yn

k , k = 1 . . . l, we get a ”hard” labelling. Evaluating the performance of
the hard SVM classification, using the confusion matrix on the set set, we find
that it provides a very high performance, with an overall accuracy of 95.4%.

However, not all pixels have a high value of membership towards a specific
class as output of the SVM. Usually one can introduce a threshold T, such that
each pixel xns is assigned to the class k if the SVM output vector yn

k > T and
yn

k > yn
j holds for all j 6= k. Indeed if we put such a rejection threshold on the

SVM output, we see that, for example when T = 0.3, a total of 0.14% of the
pixels is rejected. Indeed in our images many pixels are mixed pixels, especially
when a part of an artificial surface (or built-up area) is mixed with crops, and
these mixed pixels than have low memberships in the 7 pure land cover classes.
Fig.3 (left side) shows the distribution of rejected pixels on the SOM output grid,
where the dimension of the red hexagons is directly related to the total number of
rejected pixels. By looking at the position of the big red hexagons in comparison
to the white unlabelled nodes in Fig. 2, we find a large correspondence: at least
six of the unlabelled nodes (in the middle of the grid) have large quantity of
SVM-rejected pixels (red hexagons).

Also shown in Fig. 3 (right side) is the SOM lattice, where each SOM node
is associated (using a majority vote criterion) to one of the 7 land cover classes,
exploiting the hard SVM labels on the whole dataset. This shows that, when
forced to have an hard classification on each pixel, pixels with same SVM-class
form compact clusters on the SOM lattice.



Considering the pixels belonging to the unlabelled nodes of Fig. 2 (left) as
unclassified pixels (class 8), we evaluate their distribution with respect to the
pixels rejected by the SVM-classifier. Table 2 shows the confusion matrix between
the answer provided by the SOM and the one provided by the SVM, evaluated on
the whole unlabelled dataset. Columns, from left to right, corresponding to SOM
information classes from 1 to 7, while the 8th column refers to the unlabelled
nodes. Matrix of table 2 shows an agreement of 86% on the restricted sub-matrix
of 7 × 7 information classes, and the 8th row shows that the 74% of the pixels
rejected by the SVM (i.e. 6422 pixels) falls into the unlabelled nodes of the SOM.
However, in the 8th column there are high percentages of pixels of SVM-class 1,
4 and 6 assigned to the unlabelled nodes. To understand this result one have to
consider that the number of labelled pixels used in the classification of the SOM
nodes is very small (see Table 1), thus some of the unlabelled nodes remain
unlabelled due to the absence of sufficient labelled data of the corresponding
cover class. This is confirmed by comparing the grid of Fig. 3 with the one in
Fig. 2. It is evident that at least 3 nodes, circled in Fig. 3, are unlabelled due to
the lack of labelled training data.

The most part of unlabelled nodes are mainly associated to rejected pixels.
From 8th row one see that the 74% of the pixels rejected by the SVM classification
falls into the unlabelled nodes of the SOM.

Table 2. Results of the classification procedure on the whole dataset for the seven
investigated classes described in the text. Each column represents the answers pro-
vided by the SOM labelled nodes plus the unlabelled ones (see Fig. 2), while each row
represents the SVM output for the same information classes plus the rejected pixels.

Class number 1 2 3 4 5 6 7 Unlabelled

1 36109 8 31 841 0 2195 0 15024

2 0 32211 0 4219 2140 35 0 2431

3 9 0 8105 181 0 0 504 0

4 2087 117 1583 26199 0 2310 6 11017

5 64 872 10 42 5128 1277 0 242

6 0 3810 4 35 1869 27635 0 22054

7 0 0 59 0 0 0 15294 0

Rejected 117 417 209 662 0 892 2 6422

5 Conclusions

This work focuses on the classification of satellite multi-spectral images start-
ing from a limited number of labelled data through a two step semisupervised
strategy based on Self Organized Map algorithm. The unsupervised clustering
provided by the SOM shows good capability to separate the 7 investigated land-
cover classes on a bi-dimensional output grid, where each node of the grid is



labelled according to a majority vote technique. The resulting land cover map
shows an overall accuracy of 92.05% with respect to a labelled test set.

Moreover, we investigate the meaning of the unlabelled nodes on the SOM
grid exploiting the results of a Support Vector Machines with a rejection thresh-
old. According to our results, while some unlabelled nodes are related to the lack
of sufficient number of labelled samples, the large part of the unlabelled nodes
represent mixed pixels, i.e. pixels that have characteristic features different from
the seven pure land-cover classes, being a mixture of these.
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