A Single-Poly EEPROM Cell for Embedded Memory Applications

A. Di Bartolomeo1,2,*, H. Rücker1, P. Schley1, A. Fox1, S. Lischke1, Kee-Yeol Na1,3

1 IHP Microelectronics, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
2 Dipartimento di Fisica E.R. Caianiello and INFN Gruppo Collegato di Salerno and Centro Interdipartimentale di Ricerca NANO_MATES, Università di Salerno, via S. Allende, 84081, Baronissi, Italy
3 Chungbuk Provincial College, Okcheon Eup, Okcheon Goon, Chungbuk, Korea, 373-807

Abstract

We present a novel single poly-silicon EEPROM cell for embedded memory. The cell is integrated in a 0.13 μm RF-CMOS technology without process modifications and is composed of an NMOS transistor and a MOS capacitor on two isolated P-wells sharing a floating poly-silicon layer. A two-polarity voltage of ± 6 V is applied for writing and erasing using uniform channel Fowler-Nordheim tunnelling. Operations faster than 1 ms, endurance over 10^3 cycles and data retention longer than 10 years are demonstrated.

Keywords: non-volatile memory, Flash memory, EEPROM, single-polysilicon, Fowler-Nordheim tunnelling, reliability, endurance, data retention.

1. Introduction

The continuous enhancement of performance and functionality in virtually all electronic systems has raised the demand for embedded non-volatile memories (NVM) for permanent but upgradeable storage of configuration and personalization data and/or operating and application codes. Many system-on-chip (SoC) applications in the consumer and communication areas require moderate amounts of NVM of a few kbit and a limited number of write and erase operations to integrate functions such as security code encryption or tuning of analog circuits.

In the past decade, several research efforts have been addressed toward new embedded non-volatile cells which facilitate integration into existing CMOS or BiCMOS technologies. In this context, single poly-silicon non-volatile devices have attracted considerable attention [1-8].

* Corresponding author. E-mail address: dibant@sa.infn.it
In the present work, we report on a novel single-polysilicon EEPROM (SPEE) cell concept that utilizes uniform-channel Fowler-Nordheim (FN) tunnelling for programming and erasing. The SPEE cells were fabricated in a 0.13 µm RF-CMOS/BiCMOS process [9] without any process modification. This process offers also high-speed SiGe heterojunction bipolar transistors. However, only standard features of the RF-CMOS process were used for the integration of SPEE cells discussed here. The memory cells, constituted by an NMOS transistor and a MOS capacitor, is built on two isolated P-wells, capacitively connected by a common poly-silicon layer functioning as floating gate.

The choice of a single polysilicon cell was driven by the possibility of integration without additional masks or extra process steps. Further requirements were the limitation of the maximum voltages for write and erase operations to values well below breakdown of source/drain junctions and the request of low power consumption for wireless applications. Taking advantage of the isolated P-well available in the triple-well process, the design of the SPEE cell enables two-polarity voltage for write/erase operations and avoids high voltage sources and signals. Its structure has been conceived for twofold uniform-channel Fowler-Nordheim (FN) programming which limits power consumption.

In this paper, we describe the structure of the SPEE cell and discuss data relevant to write and erase operations, endurance and data retention. Based on the results achieved, we consider the cell as a promising device for embedded memory applications with a size of a few kbit and about one thousand write/erase cycles.

2. Cell structure

The SPEE cells are fabricated in a 0.13 µm RF CMOS process without process changes. The process offers a 2.0 nm and a 7.0 nm gate oxide for 1.2 V and 3.3 V CMOS devices, respectively. A deep N-well is available for the fabrication of isolated NMOS devices. In the SPEE cells, the 7.0 nm gate oxide is used as the tunnel oxide. The deep N-well of the CMOS process is also used for the isolation of the non-volatile memory cells.

The cross section of the SPEE cell is shown in Fig. 1. The cell consists of an NMOS transistor (FG-MOS) and a MOS capacitor (MOS-C) with a shared poly-silicon layer, which serves both as gate of the FG-MOS and as top plate of the MOS-C. This poly-silicon layer (n-type) is electrically floating and constitutes the charge trapping element, i.e. the floating gate (FG) of the cell. The control gate (CG) is made by an isolated P-well (PW_CG). A second isolated p-well (PW_FG) is housing the FG-MOS. A select NMOS transistor (SG-MOS), in series with the FG-MOS and in the same P-well, has been added to have additional control on the cell.
operations and to avoid overerase failures in memory arrays. The proposed SPEE cell uses an isolation scheme that allows one to bias the control gate and the well of the FG transistor with two polarities. This scheme facilitates the use of Fowler-Nordheim tunnelling for write and erase operations.

The MOS capacitor (as well as the FG-MOS one on the other well) is operated either in accumulation or in inversion for write and erase operations, respectively. An n+ diffusion, shorted to the p+ contact of the PW_CG by a common salicide layer, serves as electron reservoir for the fast formation of the inversion layer at the surface of the PW_CG.

For a programming time of 1 ms or less and the given thickness of the tunnel gate oxide of 7 nm, the voltage across the oxide has to be higher than 10 V which is close to the breakdown voltage of the S/D-well junctions. This problem is overcome by halving the voltage and applying simultaneously positive and negative pulses to the control and floating gate wells, which receive biases always safely below their breakdown. In such conditions, uniform channel electron Fowler-Nordheim (FN) tunnelling takes place between the PW_FG and the floating poly-silicon layer on top of it [10]. Compared to other schemes, the twofold FN mechanism has the advantage of lower power consumption and simpler source/drain layout. The lower voltage between source and P-well during erase operation results in the absence of band-to-band tunnelling which is favourable for the cell reliability. The non-complex source/drain engineering on the other hand enables simpler process integration, lower area consumption and easier scaling to smaller dimensions.

SPEE cells with different lengths of the FG_MOS gate and different areas of the MOS capacitor have been manufactured. In the present work, we focus on the characterization of cells which have FG_MOS with $L/W = 0.33 \mu m/0.15 \mu m$ and MOS_C with active area of $0.3\times5.335 \mu m^2$. Similar results were obtained for cells with scaled FG_MOS transistors with $L/W = 0.24 \mu m/0.15 \mu m$. The dimensions of the MOS-C have been chosen to have a high coupling ratio, which obviously results in faster writing and erasing [5,11].

3. SPEE characterization

3.1. Write/erase operations

Typical bias voltages applied to SPEE cells for erase and write operations and for Vt measurement are listed in Table 1. In this paper, we designate as written the status with electrons stored in the floating gate, i.e. the status with higher threshold voltage, Vt. The Vt is defined as the control gate voltage, V_{PW_CG}, at which the drain current I_{DS} is equal to 45 nA, i.e. to $(100 \times W/L)$ nA, when $V_{DS} = 0.1$ V and $V_{SG} = 3.3$ V.
The voltages applied to PW_CG and PW_FG terminals determine all the other biases and therefore the electric field across the tunnel oxide. These voltages have opposite sign but usually the same absolute value, which is referred as programming voltage below. More specifically, cell writing (erasing) is achieved by applying a positive (negative) voltage to PW_CG and a negative (positive) one to PW_FG, while electrons are injected into (ejected from) the floating gate. NW_FG and NW_CG terminals are biased to keep the junction with the respective P-well reverse biased. The simultaneous biasing of source (S), drain (D) and select gate (SG) terminals is needed to provide electrons for the fast formation of an inversion layer at the surface of the PW_FG below the floating gate for uniform-channel FN tunnelling and to avoid unwanted leakage current to the SG gate. It can be noticed that S, D, and SG terminals are kept at a common potential, systematically 1 V higher than the bias applied to PW_FG. This potential defines the potential of the inversion channel of the FG_MOS, thus determining the effective negative potential during writing. The higher voltage at the S, D, and SG terminals was introduced to eliminate any risk of latch-up.

Latch-up due to the parasitic bipolar transistors formed by the nested wells (Fig. 2) could occur if the junction between PW_FG and S/D is forward biased. Such an event could happen when applying the positive pulse to the PW_CG because of the high resistance of PW_FG. In the cells investigated here, the contact to the PW_FG and the FG_MOS are located in different active regions separated by a shallow trench (Fig. 2). This results in a high resistance of the FG_PW due to a sheet-resistance of about 5 kΩ/sq. of the isolated P-well below the shallow trench. The problem of the high resistance of the PW_FG and thus the risk of latch-up can be avoided by contacting the P-well within the active area of the FG_MOS in a new layout. In the present investigation, we have excluded any risk of latch-up by applying at S and D a potential that is 1V above the potential of the PW_FG.

Fig. 3 shows the transfer characteristics of the FG-MOS for a SPEE cell as produced, after write and after erase. The negative value (- 0.4 V) of the threshold voltage of the as-produced cell is due to the positive bias applied during Vt measurement to NW_CG, which has a capacitive coupling to floating gate that can invert the surface of PW_FG. The programming operations shift the transfer curve and increase the Vt. The more negative Vt after erase means that the floating gate has now a net positive charge which transforms the FG-MOS transistor from an enhancement to a depletion device.

The transient characteristics of the SPEE cell are shown in Fig. 4 (a) and (b). They are obtained by applying successive voltage pulses of growing length (for pulse heights of ± 5.5 V, ± 6.0 V and ± 6.5 V, respectively). Fig. 4 (a) shows that a threshold voltage Vt = + 2 V (Vt
- 2 V) is reached in about 50 µs (3 ms) for a programming voltage of ± 6 V. A bias of ± 6.5 V reduces the write/erase times by about a factor of ten. For both operations, the Vt change depends on the applied voltage. Faster write with respect to erase is due to the flat band potential of the FG_MOS and to the NW_CG bias, whose effects add to that of the voltage applied to the control gate during write and subtract from it during erase.

Fig. 4 (b) demonstrates that the achieved Vt for erased or written states is independent of the initial value of the threshold voltage. This is a consequence of the strong dependence of the FN current on the field across the tunnel oxide. This field is influenced by the charge stored on the floating gate. The higher the amount of stored charge is, the stronger is the oxide field (or the tunnelling current, see inset in Fig 4 (b)) and the faster is the Vt change. This effect makes transient curves with different starting points to converge.

The Vt distribution has very small wafer and lot variations. Fig. 5 shows a typical Vt distribution from a measurement in write-erase-write sequence on all 60 dice of an 8 inch wafer. The figure shows also the excellent reproducibility of the write operation.

3.2. Endurance

The endurance behaviour is reported in Fig. 6. Voltage pulses of constant width and ± 6 V height were applied to continuously switch between written and erased states corresponding to Vt = + 2 V and Vt = - 2 V, respectively. Cycling results in an upward shift both for VtE (the Vt after erase) and VtW (the Vt after write) and in a window closure (VtW-VtE), i.e. in a wear-out induced programming speed reduction. The upward shift is caused by electrons trapped at Si/SiO₂ interface and in the gate oxide, which increase the FG-MOS transistor intrinsic Vt. The window closure is mainly due to the charge trapped in the gate oxide, which decreases the electric field at the injecting interface and reduces the tunnelling current [12-15]. The two competing mechanisms, intrinsic Vt increase and tunnelling current reduction, add together during erase but have opposite trend in case of write and that explains the higher shift of VtE with respect to VtW [16]. The different behaviour of VtE and VtW determines the observed window closure.

The effects of cycling wear-out can also be seen in Fig. 7, where we show the transfer and transconductance characteristics of the FG-MOS before and after 10^5 cycles. The saturation current, the sub-threshold slope and the transconductance are decreased, as expected at the presence of bulk and interface states, which modify the threshold voltage and degrade the carrier mobility and the sub-threshold slope. A reliability issue related to that is the reduction
of the read current and the increase of the drain leakage which have to be taken into account in the design of memory blocks.

Endurance tests on CAST arrays [17] of 1024 cells in-parallel show the same behaviour with similar upward Vt shift and window closure (Fig. 8). By analogy to the single cell, the threshold voltage of the array is determined as the PW_CG potential which gives a current of 1024×45 nA for $V_{DS} = 0.1$ V and $V_{SG} = 3.3$ V.

It is also important to notice that the endurance characteristics are not worsened by an enlarged programming window. Furthermore, we did not experience the initial decrease of the erased Vt, sometimes observed on Flash endurance tests as a consequence of hole generation and trapping, whose positive charge enhances the tunnelling efficiency.

A high temperature baking at more than 100 °C is expected to deactivate some of the defects created during cycling and re-establish the electrical behaviour of the cells. Fig. 9 confirms this expectation showing the effect of a ~200 hours bake at 250 °C on cells previously subjected to 10^4 write/erase cycles. Apart from the charge loss (see next paragraph), the improvement of the sub-threshold and transconductance characteristics is evident confirming the deactivation of cycling induced defects at Si/SiO$_2$ interface.

Many applications of embedded memories require a limited number of write/erase cycles, typically below 10^3 during the lifetime of the circuit. Accordingly, the endurance specifications can be conservatively limited to 10^3 cycles. A variation of less than 1 V in VtE and VtW and a Vt window closure of less than 20 % is measured after 10^3 cycles.

3.3. Data retention

Data retention has been studied by programming all 60 cells of an 8 inch wafer to Vt = + 4 V and measuring the threshold voltage and the transfer characteristics at regular intervals during a multi-hour bake at 250 °C. At such conditions, charge loss is accelerated by temperature and field, which increase thermionic emission over the Si-SiO$_2$ barrier, field-assisted electron injection, electron detrapping and transport through the oxide.

Fig. 10 shows the time evolution of Vt during the test. It also shows the threshold voltage of a sample of cells from a different wafer programmed to Vt = 6 V and stored at room temperature. As expected, charge loss is faster for combined effect of temperature and field. Fig. 10 shows a decreasing average Vt with a broadening distribution. Nevertheless, we point out that all the cells remain in the same distribution, meaning that there are no devices with anomalous oxide leakage in the studied samples.
Since data retention tests need statistics of a high number of cells to detect anomalous bits, the same test was performed on 1 kbit CAST arrays. The threshold voltage for the array is here defined at the same current level as the Vt of the single cell (i.e. at 45 nA, a current corresponding to deep sub-threshold region), thus allowing the detection of cells with anomalous leakage current as a down-shift of VtE [17]. The failure of 2 arrays out of 60 is shown in Fig. 11, where two arrays are subjected to significant charge loss during the first few hours. One failing array shows an immediate Vt reduction, that stops around 2V, with the array afterwards following the main distribution. Such behaviour is attributed to so-called stop bits, i.e. defective bits that are suddenly transformed to normal cells for leakage path annealing during retention baking [18]. The second failing array reaches the non-written status very soon, indicating the presence of one or more leaky cells, likely due to some extrinsic defects that may induce conductive paths in the oxide.

Fig. 10 and 11 show also data for retention after cycling. Despite the poor statistics, the collected data show that retention, in average, is not affected by 10^{14} write/erase cycles.

The temperature dependence of the data retention is described by the Arrhenius model ($t_{eq} = t_{exp} \cdot \exp[E_a/k_b \cdot (1/T_{eq} - 1/T_{exp})]$ where $t_{eq/exp}$ and $T_{eq/exp}$ are the equivalent/experimental time and temperature, E_a conservatively assumed to be 0.6 eV is the activation energy and k_b is the Boltzmann constant [19, 20]). Using this relation, our data can easily be converted to the more conventional temperature of 55 °C used for Flash memory endurance specifications [21] thus covering a time interval of 116 years. In particular, by assuming a starting Vt of 2 V, an average Vt reduction less than 20 % is expected after 10 years at 55 °C (see inset in Fig. 10).

4. Conclusions

We have presented the design and electrical characterization of a novel single-poly EEPROM cell that constitutes a promising device for embedded memory applications with medium size of a few kbit and about one thousand write/erase cycles. The cell, manufactured in a 0.13 µm RF CMOS technology without process changes, is composed of an NMOS transistor and a MOS capacitor on two isolated P-wells, topped by a poly-silicon layer serving as floating gate. The maximum required voltage for programming operations can be restricted to ± 6 V by using dual-polarity voltages. Write and erase are performed by uniform channel FN tunnelling, with endurance of more than 10^3 cycles and charge retention longer than 10 years at 55 °C.
References

Tables
Table 1: Biasing conditions for SPEE cell erase and write operations and Vt measurement.

Figure captions
Fig. 1: Schematic cross-section of SPEE cell.
Fig. 2: Parasitic bipolar transistors and latch-up circuit of the SPEE cell. Typical bias for cell write operation is indicated.
Fig. 3: Transfer characteristics of a SPEE cell as produced, after write and erase operations, for $V_{DS} = 0.1 \text{ V}$ and 1.5 V, respectively.
Fig. 4: Write/erase characteristics of standard SPEE cell for different pulse heights (a) and starting threshold voltages (b). The inset shows the floating gate current $I_{FG} = C_{CG-FG} \cdot |dVt/dt|$ during erase (C_{CG-FG} is the capacitance of the MOS-C capacitor).
Fig. 5: Vt distribution of all the SPEE cells of a wafer for a write-erase-write sequence.
Fig. 6: Endurance of two SPEE cells for write/erase cycles between +2 V and -2 V. The test was performed at room temperature (27 °C) by continuous application of constant length 6 V pulses.
Fig. 7: Transfer characteristics and transconductance of cells of Fig 6, before and after 10^{5} write/erase cycles.
Fig. 8: Endurance test of a CAST arrays of 1024 in-parallel SPEE cells. The test was performed at room temperature by continuous application of constant 6 V pulses. The inset shows the transfer characteristics before and after cycling.
Fig. 9: Transfer characteristics and transconductance of cells subjected to 10^{4} write/erase cycles before and after a bake process at 250 °C.
Fig. 10: Time evolution of the SPEE cell threshold voltage Vt under temperature and field accelerated stress. The inset shows the estimated retention lifetime at 55 °C.
Fig. 11: Time evolution of the threshold voltage of CAST array of 10^{3} cells for temperature and field accelerated stress. The threshold voltage is defined here as the voltage at the control gate corresponding to a cell current of 45 nA.
<table>
<thead>
<tr>
<th></th>
<th>PW_CG</th>
<th>NW_CG</th>
<th>PW_FG</th>
<th>NW_FG</th>
<th>D/S/SG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V)</td>
<td>(V)</td>
<td>(V)</td>
<td>(V)</td>
<td>(V)</td>
</tr>
<tr>
<td>Erase</td>
<td>-6</td>
<td>0</td>
<td>+6</td>
<td>+6</td>
<td>PW_FG +1</td>
</tr>
<tr>
<td>Write</td>
<td>+6</td>
<td>+6</td>
<td>-6</td>
<td>0</td>
<td>PW_FG +1</td>
</tr>
<tr>
<td>Vt</td>
<td>sweep</td>
<td>+6</td>
<td>0</td>
<td>0</td>
<td>D = 0.1, S = 0, SG = 3.3</td>
</tr>
</tbody>
</table>

P_SUB terminal is grounded.

Table 1: Biasing conditions for SPEE cell erase and write operations and Vt measurement.
Fig. 1: Schematic cross-section of SPEE cell.

Fig. 2: Parasitic bipolar transistors and latch-up circuit of the SPEE cell. Typical bias for cell write operation is indicated.
Fig. 3: Transfer characteristics of a SPEE cell as produced, after write and erase operations, for $V_{DS} = 0.1$ V and 1.5 V, respectively.
Fig. 4: Write/erase characteristics of standard SPEE cell for different pulse heights (a) and starting threshold voltages (b). The inset shows the floating gate current $I_{FG} = C_{CG-FG} \cdot |dV_t/dt|$ during erase (C_{CG-FG} is the capacitance of the MOS-C capacitor).
Fig. 5: Vt distribution of all the SPEE cells of a wafer for a write-erase-write sequence.

Fig. 6: Endurance of two SPEE cells for write/erase cycles between +2 V and -2 V. The test was performed at room temperature (27 °C) by continuous application of constant length 6 V pulses.
Fig. 7: Transfer characteristics and transconductance of cells of Fig 6, before and after 10^{15} write/erase cycles.

Fig. 8: Endurance test of a CAST arrays of 1024 in-parallel SPEE cells. The test was performed at room temperature by continuous application of constant 6 V pulses. The inset shows the transfer characteristics before and after cycling.
Fig. 9: Transfer characteristics and transconductance of cells subjected to 10^{4} write/erase cycles before and after a bake process at 250 °C.

Fig. 10: Time evolution of the SPEE cell threshold voltage V_t under temperature and field accelerated stress. The inset shows the estimated retention lifetime at 55 °C.
Fig. 11: Time evolution of the threshold voltage of CAST array of 10^3 cells for temperature and field accelerated stress. The threshold voltage is defined here as the voltage at the control gate corresponding to a cell current of 45 nA.