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Preface

These notes are for my students and for me. For my students, be-
cause studying Physics may be an hard task and a reference text
where all the arguments are collected and discussed along the same
lines as they were presented in the class may help, and for me basi-
cally for the same reasons, since preparing Physics lessons may be
an hard task as well.

The ambition of these notes is not to replace books, to which I
invite anyone to make reference as often as possible, nor to be rig-
orous neither exhaustive, but to provide a basic, friendly (as far as
possible :-)), self-contained and familiar text to help against any dif-
ficulty. They are thought as a work in progress, to be improved and
extended day by day on the basis of everyday’s teaching experience.
In preparing them I started from the excellent notes ”Elementary
course in Statistical Mechanics” by my former Ph.D. supervisor and
dear friend Antonio Coniglio to which I am profoundly indebted.
The idea is to gradually adapt this original text to my personal way
of teaching and to the ever changing needs of University courses. In
doing that, everyone’s help will be greatly appreciated, particularly
from the students.

Federico Corberi
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Chapter 1

Overview of
Thermodynamics

1.1 Preliminaries

Thermodynamics is the study of macroscopic systems independent
of their microscopic constituents. Statistical Mechanics is the study
of macroscopic systems starting from the knowledge of their micro-
scopic constituents - e.g., atoms and molecules - and the way in which
they obey laws of physics such as those of classical mechanics and
quantum mechanics. The scope of Statistical Mechanics is therefore
to build bridge between the microscopic and the macroscopic world.

As quantum mechanics reproduces classical mechanics in the limit
in which the Planck constant approaches zero and special relativity
contains classical mechanics in the limit in which the velocity com-
pared to the speed of light is negligible, similarly Statistical Mechan-
ics encompasses Thermodynamics in the case of the thermodynamic
limit, where the number of particles N and the volume V of the
system both tend to infinity while the ratio ρ ≡ N/V remains finite.

In Thermodynamics, the state of a system is defined by fixing
some (hopefully few) macroscopic variables (which will be denoted
as control variables or parameters) in such a way that two states
characterized by the same variables are macroscopically indistin-
guishable. A relation among the state variables is called an equation
of state. Since the number of microscopic variables needed to de-
scribe a system is at least of the order of its constituents, which,
roughly speaking, is of the order of the Avogadro number, a natural
question is: why fixing a relatively small number of macroscopic con-

2



CHAPTER 1. OVERVIEW OF THERMODYNAMICS 3

trol variables should be sufficient to make all the microscopic state
macroscopically equivalent? Nowadays an answer to this question
can only be given for equilibrium states. A thermodynamic system
is in equilibrium if the thermodynamic variables do not change over
time (i.e. there is time-translation invariance, the system is station-
ary) and, in addition, there are no fluxes (of matter, energy or other)
across the sample. Examples of stationary systems which are not in
equilibrium states are: systems in contact with two thermal baths at
different temperatures, a metallic ring where an electrical current is
induced, a river which is regularly flowing etc... In all this systems a
flux is present. Equilibrium states should not be confused with long-
lived stationary metastable states, like supercooled liquid or gases
or superheated liquids. This states have a finite lifetime and hence,
strictly speaking, cannot be thought of as stationary (however, in
some cases, this can be considered as temporary realizations of equi-
librium states). According to the principles of Statistical Mechanics,
to systems in equilibrium a very restricted number of macroscopic
control variables can be associated (e.g., for a mole of a perfect gas,
the pressure and the temperature, or alternatively the volume and
the temperature etc...). This property, however, does not hold for a
non-equilibrium state whose description, in general, cannot be given
in terms of a small number of macroscopic variables (at least, this
cannot be shown presently).

1 2

1+2

2λ

Figure 1.1: Left: The two separated systems 1 and 2. Right: The combined
system 1+2. The magenta area is the interaction region.

Thermodynamic variables can be either intensive or extensive.
The former do not depend on the dimension of the system. Typical
examples are temperature and pressure. The temperature of the
boiling water does not depend on the amount of water we put in
the pot. Analogously the vapor pressure is not influenced by the
amount of vapor. Extensive variables, instead, are linear functions
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(are proportional) of the dimension of the system, as expressed by
the volume V or the number of particles N . As an paradigm let us
focus on the internal energy U . Let us consider two identical isolated
systems of volume V , denoted as 1 and 2, with energy U1 and U2, as
in Fig. 1.1. Imagine now to bring the two parts in close contact so
as to form a new system that will be denoted as 1 + 2. Which is its
internal energy U1+2? Clearly one has

U1+2 = U1 + U2 + Uint, (1.1)

where Uint is the interaction energy between the components (par-
ticles, molecules, atoms etc...) of system 1 and those of 2. If inter-
actions are short ranged, so that they become negligible for inter-
particle distances larger than some threshold λ, then Uint will be
roughly proportional to the number NAB of couples AB of interact-
ing particles such that A belongs to 1 and B to 2. There are n1 ≃ S ·λ
particles in a slab of system 1 of width λ around the contact surface
S between 1 and 2. Each of them interact with all the particles in a
volume Vi = Bdλ

d around it, where d is the Euclidean dimension and
Bd is geometric constant (in an isotropic case it is the volume of a
unitary radius sphere in d dimension, e.g. (4/3)π in d = 3). Clearly,
not all the particles contained in Vi contribute to NAB since they do
not necessarily belong to system 2, however it is clear (can you prove
it?) that the number of those belonging to 2 is also proportional to
λd. Hence Uint ∝ NAB ∝ n1 · λd = S · λd+1, Reasoning in the same
way one also has that U1 = U2 ∝ V · λd. In the thermodynamic
limit V → ∞ faster than S and hence Uint can be neglected in Eq.
(1.1) (is it true also in an infinite-dimensional space with d = ∞?).
This shows that U is an extensive quantity. Notice that the same
argument does not apply in system with long-range interactions. In
the limiting case when every particle interact with all the others
(usually denoted as mean-field limit) one has U1 = U2 ∝ V 2 while
U1+2 ∝ (2V )2. Hence U1+2 ̸= U1 + U2 and the additivity property is
spoiled. For this reason, if nothing will be explicitly stated, in the
following we will always refer to short-range systems.

An isolated system that is not in equilibrium and is not main-
tained out of equilibrium by some external agent (like, for instance,
by injecting energy into the system as in all the previous examples
of non-equilibrium stationary states) transforms or evolves over time
until equilibrium is reached. Hence equilibrium is generally a limit
state, an attractor. In nature, the typical relaxation process towards
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equilibrium is irreversible, since the system does not spontaneously
evolve in the reverse direction. A transformation can be made (quasi)
reversible if some external control parameter (e.g. T or V ) is varied
in a very smooth way. For instance, we can gently cool a gas by
putting it in contact with a large thermostat whose temperature is
decreased sufficiently slow. In this case the transformation is called
reversible if (a) the non-equilibrium trajectory of the system can be
approximated as a succession of equilibrium states and (b) it is such
that the system passes through the same states when the variation
of external parameters change sign (is reversed in time). Notice that
(a) and (b) are deeply related, since only for equilibrium states the
value of few external parameters fully determine the state of the sys-
tem. In an irreversible transformation (i.e. any transformation that
is not reversible) non-equilibrium states are assumed whose control
cannot be obtained by means of few thermodynamic variables.

1.2 Laws of Thermodynamics

1.2.1 Zeroth Law of Thermodynamics

Two systems are in thermal contact if they do not exchange matter
but exchange energy without doing work on each other. If they are
in thermal contact and in equilibrium they are said to be in thermal
equilibrium. The zeroth law of Thermodynamics states that if two
systems are in thermal equilibrium with a third system, then they are
also in thermal equilibrium with each other. When two systems are
in thermal equilibrium, we say they have the same temperature. To
define precisely the temperature of a system A we use a particular
system, called a thermometer, that has a property such that one
of its macroscopic parameters (e.g., volume) is sensitive when it is
brought into thermal contact with another system with which it is
not in thermal equilibrium. Once we put the thermometer in contact
with system A, the macroscopic parameter will assume a particular
value. This value is defined operatively as the temperature of system
A. We will see in Sec. 1.4 a different (assiomatic) definition of the
temperature.
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1.2.2 First Law of Thermodynamics

The first law of Thermodynamics deals with the conservation of en-
ergy. In classical mechanics, the work ∆W done on a system of n
objects of coordinates r⃗i . . . r⃗n is given by

∆W =
∑
i

F⃗i ·∆r⃗i (1.2)

where F⃗i is the force acting on object i and ∆r⃗i the displacement
caused by the force. This expression is written in terms of (many)

microscopic variables. If F⃗i = PSn̂, where P is the external pres-
sure exherted on a gas, S the surface of the system exposed to
that pressure and n̂ the unit vector perpendicular to S, one has
∆W = −P ·∆V . This provides an expression for the work in terms of
(few) thermodynamic (i.e. macroscopic) variables. In general, other
thermodynamic forces can do work on the system. For example, a
chemical potential µ can cause a certain amount ∆N of particles to
leave (or enter) the system. In this case one has ∆W = µ · ∆N .
In general, the work can be written as the product of an intensive
variable f (e.g. P or µ) times the variation of an extensive one X.
f and X are said to be conjugate. If there are several forces fi the
thermodynamic work can be expressed as

∆W =
∑
i

fi∆Xi. (1.3)

In a thermodynamic transformation in which there is no work done
on the system, the amount of energy ∆Q exchanged by the system
with a reservoir due to a difference in temperature ∆T , is called
heat. The thermal capacity is defined by

C ≡ δQ

δT
≡ lim

∆T→0

∆Q

∆T
. (1.4)

The specific heat is the thermal capacity of a sample of unitary mass.
In a generic thermodynamic transformation, the first law of Ther-

modynamics states that

∆U = ∆Q−∆W (1.5)

where ∆U is the energy increment of the system, which depends only
on the initial state and the final state.
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A

BQ
1
 , W

1

Q
2
 , W

2

Figure 1.2: A thermodynamic transformation from a state A to another B.

For an infinitesimal transformation Eq. (1.5) becomes

dU = δQ− δW, (1.6)

where δQ and δW are infinitesimal amounts of heat and work or,
using Eq. (1.3)

dU = δQ−
∑
i

fi∆Xi. (1.7)

The content of the first law is that dU is an exact differential, while
δQ and δW are not. By integrating (1.6) from an initial state A to
a final state B, we have

UB − UA = Q−W (1.8)

where Q is the total heat absorbed by the system, W the work
done on the system, and U a function of the state of the system, so
UB − UA is independent of the path between states A and B. Thus
while Q and W depend on the particular transformation, Q − W
depends only on the initial and final state. Thus for two distinct
transformations 1 and 2, which transform the system from state A
to state B (Fig. 1.2),

Q1 −W1 = Q2 −W2, (1.9)

where Q1 and Q2 are the heat absorbed by the system during trans-
formations 1 and 2, andW1 andW2 are the work done by the system
on the external world during the the transformations 1 and 2.

1.2.3 Second law of Thermodynamics

The second law of Thermodynamics imposes some limitations on the
possible transformations in which the energy is conserved. There are
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many equivalent formulations of the second law of Thermodynamics.
The equivalent formulations of Clausius and Kelvin are based on
common experience.

Clausius Formulation

Figure 1.3: Rudolf Julius Emanuel Clausius (Köslin, 02/01/1822 - Bonn,
24/08/1888)

It is impossible to realize a thermodynamic transformation in
which heat is transferred spontaneously from a low-temperature sys-
tem to a high-temperature one (Fig. 2) without work being done on
the system.

Kelvin Formulation

Figure 1.4: Lord William Thomson, I barone Kelvin (Belfast, 26/06/1824 -
Largs, 17/12/1907)

It is impossible to realize a thermodynamic transformation whose
unique result is to absorb heat from only one reservoir and transform
it entirely into work. Namely, it is impossible to realize an engine
that is able to transform heat into work using only one reservoir at
temperature T (Fig. 3). If this were possible, we could extract heat
from the ocean and transform it entirely in useful work.
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Consequences

From these statements it is possible to derive important conse-
quences concerning the efficiency of an engine. Kelvin’s statement
implies that to produce work an engine needs to operate at least
between two reservoir (Fig. 4). If Q1 is the heat absorbed from
the reservoir at temperature T1 and Q2 the heat absorbed from the
reservoir at temperature T2, in one cycle from the first law ∆U = 0.
Therefore

Q1 −Q2 =W. (1.10)

The efficiency of any engine can be defined as

η ≡ Q1 −Q2

Q1

. (1.11)

It is possible to show that the efficiency of a reversible engine ηrev
is always greater than the efficiency η of any other engine working
between the same temperatures

ηrev ≥ η. (1.12)

As a corollary of (1.12), it follows that two reversible engines which
work between two reservoirs respectively at the same temperatures
T1 and T2 have the same efficiency. It follows that ηrev is a universal
function of T1 and T2 (Fig. 4b). To find this universal function, we
calculate the efficiency of one particular engine, called the Carnot
Engine, which is an ideal reversible engine made of a cylinder filled
with an ideal gas. The engine performs a cyclic transformation made
of two isothermal and two adiabatic transformations (Fig. 1.5). Each
point in the P − V plane represents an equilibrium state. ab is the
isotherm at temperature T1 during which the system absorbs an
amount of heat Q1. cd is the isotherm at temperature T2 (T2 < T1)
in which the system rejects an amount of heat Q2. bc and ad are
adiabatic. Due to the simplicity of the cycle, the efficiency ηrev can
be calculated and is found to be given by

ηrev =
T1 − T2
T1

. (1.13)

Therefore all reversible engines working between temperatures T1
and T2 have an efficiency given by (1.13). Using inequality (1.12)
and definition (1.11), it follows that any engine working between two
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temperatures T1 and T2 satisfies the inequality

Q1 −Q2

Q1

≤ T1 − T2
T1

, (1.14)

namely
Q1

T1
− Q2

T2
≤ 0, (1.15)

the equality being valid for a reversible engine.

Figure 1.5: Left: Nicolas Léonard Sadi Carnot (Parigi, 01/06/1796 - Parigi,
24/08/1832). Right: The Carnot cycle.

The relation (1.15) can be extended to an engine that works with
many reservoirs. Let ∆Qi be the quantity of heat that the system
exchanges with reservoir i at temperature Ti. Provided ∆Qi > 0, if
the heat is absorbed and ∆Qi < 0 if the heat is rejected, relation
(1.15) becomes ∑

i

∆Qi

Ti
≤ 0. (1.16)

In the ideal limit in which the number of reservoirs becomes infinite
and the heat exchanged with a reservoir is infinitesimal, relation
(1.16) becomes ∮

δQ

T
≤ 0. (1.17)

Namely, in any cyclic transformation in which the engine exchanges
an infinitesimal amount of heat δQ with a reservoir at temperature
T , relation (1.17) holds. The equality holds for reversible cyclic
transformations.
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1.3 Entropy

In a reversible transformation the integral through any cycle is zero,
so the integral must be an exact differential. Therefore we can define

dS ≡ δQ

T
, (1.18)

where δQ is the heat exchanged in a reversible transformation with
a reservoir at temperature T . The function S whose differential
is given by (1.18) is called the entropy, and it depends only on the
thermodynamic state. From (1.18) we have

SA − SB =

∫ B

A

δQ

T
,

(rev)

(1.19)

where the integral is defined along any reversible transformation.
The function S is defined up to a constant. By chosing an arbitrary
fixed state O to which we attribute zero entropy SO = 0, the entropy
of a state A can be defined as

S =

∫ A

O

δQ

T
,

(rev)

(1.20)

In this definition we assume that any state A can be reached by a
reversible transformation which starts in O. However this is not in
general the case. The problem can be circumvented by using the
third law of Thermodynamics, which states that any state at T = 0
has the same entropy. Therefore for any state A, we can chose a
suitable state O at T = 0 to which can be attributed zero entropy
such that A can be reached by a reversible transformation which
starts at O. Let us now illustrate some properties of the entropy.
Let us consider an irreversible transformation which transforms the
system from a state A to a state B. We can always imagine another
reversible transformation that brings the system from B to A. Let
us apply relation (1.17) to the entire cycle∮

δQ

T
=

∫ B

A

δQ

T
+

∫ A

B

δQ

T
≤ 0,

(irr) (rev)

(1.21)
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It follows from (1.19) that∫ B

A

δQ

T
≤ SB − SA

(irr)

(1.22)

If the irreversible transformation from A to B is adiabatic, namely,
without exchange of heat with external reservoirs, then δQ = 0.
Hence

SB − SA ≥ 0. (1.23)

If a system evolves naturally for one state to another without ex-
changing heat with the external world, the entropy of the system
increases until it reaches a maximum value, which corresponds to
a state of equilibrium (Fig. 7). Equation (1.22) and its corollary
(1.23) are a direct consequence of the second law of Thermodynam-
ics as stated by Clausius and Kelvin. An adiabatic system evolves
naturally towards states with higher entropy, and this is another
equivalent way to express the second principle:

Entropy (Assiomatic) Formulation

There exists an extensive function S of the thermodynamic con-
trol variables, called Entropy, such that, given two generic thermo-
dynamic states A and B, B is adiabatically accessible from A ony
if

SB ≥ SA, (1.24)

where the equality holds for a reversible transformation.

Consequences

Equation (1.23) has a dramatic consequence: it implies there ex-
ists a time arrow, since time must flow in the direction in which
entropy increases. In an isolated system the entropy must always
increase, so natural phenomena are irreversible. According to the
second law of Thermodynamics, if a system evolves naturally from
state A to state B, it cannot spontaneously evolve from B to A. Our
everyday experience fully confirms this result. Two systems that
come into contact initially at different temperatures will evolve to-
wards a state at an intermediate temperature after which heat no
longer flows from one to the other. The inverse process in which
the two systems begin at a uniform temperature and then move to
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a state in which they have different temperatures is never realized.
Any event such as the explosion of a bomb or an out-of-control fire
dramatically confirms the validity of the second law of Thermody-
namics. At first sight, the second law of Thermodynamics seems to
contradict the microscopic laws of dynamics. These laws, both clas-
sical and quantum- mechanical, are invariant under time reversal,
implying that if a phenomenon occurs in nature, the phenomenon
obtained by reversing the time in principle can also occur. How can
the microscopic laws of dynamics be reconciled with the macroscopic
laws of Thermodynamics? Later we will consider this question within
the framework of Statistical Mechanics, when a probabilistic inter-
pretation of the concept of entropy will clarify many of the questions
associated with the second law of Thermodynamics.

1.4 Temperature

Let us stipulate to describe the state of a system by its energy U
and by a set {Xi} of other extensive thermodynamic variables. then
we have S ≡ S(U, {Xi}) and

dS =
∂S

∂U

∣∣∣∣
{Xi}

· dU +
∑
i

∂S

∂Xi

∣∣∣∣
U,{Xj ̸=i}

· dXi (1.25)

Using the first law (1.7) we arrive at

dS =
∂S

∂U

∣∣∣∣
{Xi}

· δQ+
∑
i

[
∂S

∂Xi

∣∣∣∣
U,{Xj ̸=i}

+
∂S

∂U

∣∣∣∣
{Xi}

· fi

]
·dXi (1.26)

Let us now consider an adiabatic and reversible transformation, i.e.
δQ = dS = 0. Eq. (1.26) becomes

∂S

∂Xi

∣∣∣∣
U,{Xj ̸=i}

= − ∂S

∂U

∣∣∣∣
{Xi}

· fi ; ∀i (1.27)

Since this is a relation among state variables it must not depend on
the particular transformation we have used to derive it. Making the
position

∂S

∂U

∣∣∣∣
{Xi}

=
1

T
, (1.28)
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where T is presently a generic symbol (in a while it will be recognized
to be the temperature), so that

∂S

∂Xi

∣∣∣∣
U,{Xj ̸=i}

= −fi
T
. (1.29)

Plugging these definitions into Eq. (1.25) we arrive at

dE = TdS +
∑
i

fi · dXi (1.30)

which one recognizes as the first principle, provided that T is the
temperature. Hence Eq. (1.28) is the (assiomatic) definition of the
temperature.

1.5 Thermal Equilibrium

Let us consider two systems denoted 1 and 2 which are put in contact
(like on the right panel of Fig. 1.1). Assume that the contact surface
between 1 and 2 allows heat flows between the two system. The
system 1+2 is initially in equilibrium, hence no net heat flows are
present and the entropy S1+2 = S1 +S2 (we assume additivity) is at
its maximum. At some time, by some apparatus, we slightly perturb
the system by forcing an infinitesimal amount of heat to flow from
1 to 2, while all the other thermodynamic variables Xi are kept
constant. The whole sample 1+2 is adiabatically isolated from the
universe, hence the energy U1+2 = U1 + U2 is conserved δU1+2 = 0.
This implies

δU1 = −δU2. (1.31)

Since the system was at equilibrium S1+2 was at its maximum and
this implies δS1+2 = 0 (i.e. entropy variations occur at second or-
der but these are negligible since the perturbation is infinitesimal).
Hence we can write

0 = δS1+2 = δS1 + δS2 = (1.32)

∂S1

∂U1

∣∣∣∣ {Xi} · δU1 +
∂S2

∂U2

∣∣∣∣ {Xi} · δU2 =

(
1

T1
− 1

T2

)
δU1

This implies
T1 = T2 (1.33)
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We have derived in this way the condition of thermal equilibrium in
an assiomatic way. Notice the procedure by which we have derived
this result: We have perturbed the system around the equilibrium
condition thus deducing in this way informations on the equilibrium
state itself by the response of the system to the perturbation. This is
a first example (we wil find many others in the following) of response
theory.

1.6 Heat flows

Let us consider the same situation of the previous Sec. 1.5 but now
the two sub-systems 1 and 2 are not initially in equilibrium because
T1 ̸= T2. The system is then left to relax towards equilibrium. In
this case the total entropy S1+2 must increase during the process.
Then we have

0 ≤ δS1+2 = δS1 + δS2 = (1.34)

∂S1

∂U1

∣∣∣∣ {Xi} · δU1 +
∂S2

∂U2

∣∣∣∣ {Xi} · δU2 =

(
1

T1
− 1

T2

)
δU1

Then, if T2 > T1 it must be δU1 > 0. This shows that some heat has
flown from 2 to 1. If T2 < T1 the heat flows in the opposite direction.
Hence we arrived to establish that heat flow from the hotter systems
to the colder.

1.7 Thermal Capacity

The definition (thermcap) does not relate the thermal capacity to
state functions. In order to do that let us write

C =
δQ

dT
=

δQ
T

dT
= T

∂S

∂T
. (1.35)

This expression is somewhat vague because, since S is a function
of more than one variable (for instance it may depend on U, {Xi}),
it does not specify how the derivative on the r.h.s. is taken. In
particular we can introduce

Cf = T

(
∂S

∂T

)
{fi}

, (1.36)
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the thermal capacity at constant generalized force, or

CX = T

(
∂S

∂T

)
{Xi}

, (1.37)

the thermal capacity at constant generalized displacement. Typical
examples are CP and CV , the thermal capacities at constant pressure
or volume, respectively.

1.8 Thermodynamic Potentials

Let us now consider, for simplicity, the case in which there is only
one generalized displacement which is the volume of the system X1 =
V . The conjugate intensive variable is the pressure P . From Eqs.
(1.17,1.18), recalling that δW = PdV , the first law of Thermody-
namics for an infinitesimal reversible transformation of a fixed num-
ber of particles can be written

dU = TdS − PdV. (1.38)

Since from (1.38) U = U(S, V ) is a function of S and V and dU is a
perfect differential, it follows that(

∂U

∂S

)
V

= T

(
∂U

∂V

)
S

= −P (1.39)

Because the derivative of the energy with respect to S gives T , S and
T are called conjugate variables. Similarly, V and −P are conjugate
variables. Sometimes it is convenient to consider a thermodynamic
potential function of T instead of its conjugate S. Indeed from a
practical point of view it is impossible to use S as a control pa-
rameter, while T can be easily controlled by putting the system in
contact with a large thermostat (a thermal bath, or reservoir). Ac-
cordingly, we introduce the Helmholtz potential A, obtained from U
by subtracting the product of the conjugate variables TS

F = U − TS (1.40)

By differentiating dF = dU − TdS − SdT and from (1.38), we find

dF = −PdV − SdT (1.41)
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We note that the free energy is a function of V and T , F = F (V, T ),
and that (

∂F

∂T

)
V

= −S
(
∂F

∂V

)
T

= −P (1.42)

Similarly, we can define the enthalpy

H(S, P ) = U + PV (1.43)

By differentiating (1.43) and taking (1.38) into account we find

dH = TdS + V dP, (1.44)

from which (
∂H

∂S

)
P

= T

(
∂H

∂P

)
S

= V (1.45)

Finally, in the practical case of a system contained in a floppy con-
tainer and in contact with a reservoir it may be useful to consider
a quantity whose natural variables are P and T . This is the Gibbs
free energy

G(T, P ) = F + PV. (1.46)

By differentiating (1.46) and taking (1.41) into account we find

dG = V dP − SdT, (1.47)

with (
∂G

∂P

)
T

= V

(
∂G

∂T

)
P

= −S (1.48)

Relations (1.39), (1.42), (1.45) and (1.48) can be reproduced using
the Born diagram:

V F T
U G
S H P

(1.49)

The functions U , F , G and H are located on the square edges
between their natural variables. The derivative with respect to one
variable with the other fixed can be found following the diagonal. If
the direction is opposite to the arrow, one uses a minus sign, e.g.,(

∂F

∂T

)
V

= −S. (1.50)

Be careful, however, that it is possible to exchange only conjugate
variables, but not any other. For instance we cannot have a descrip-
tion in terms of P, V or S, T .
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1.9 Legendre Transformations

Figure 1.6: Adrien-Marie Legendre (Parigi, 18/09/1752 - Parigi, 10/01/1833)

The operation that we have done to substitute one variable with
its conjugate is called the Legendre transform. In general, if f(x) is
a function of x with the differential

df = udx with u ≡ df

dx
, (1.51)

the Legendre transform of f is

g ≡ f − xu, (1.52)

where x and u are conjugate variables. By differentiating (1.52)

dg = df − xdu− udx = −xdu, (1.53)

which shows that g is a function solely of u. To obtain explicitly
g(u), one must infer x = x(u) from the second part of (1.51), and
substitute in (1.52). the Legendre transformation can be generalized
to functions of more than one variable. If f(x1, x2, . . . , xn) is such a
function one has

df =
n∑

i=1

uidxi with ui ≡
∂f

∂xi

∣∣∣∣
{xj ̸=i}

, (1.54)

The Legendre transform with respect to xr+1, . . . , xn is

g = f −
n∑

i=r+1

uixi (1.55)
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By differentiating one has

dg = df −
n∑

i=r+1

[uidxi + xidui] =
r∑

i=1

[uidxi −
n∑

i=r+1

xidui. (1.56)

Thus g = g(x1, x2, . . . , xr, ur+1, . . . , un). Clearly, one can go back
from g to f , since the two functions contain the same informations.
Geometrically, the Legendre transformation descrive f through the
envelope of its tangents (up to an arbitrary constant).

1.10 Grand Potential

Thus far, we have considered the number of particles N to be fixed.
If in a transformation the number of particles also changes, then
the mechanical work in the first law of Thermodynamics contains an
extra term, −µdN , where µ is the chemical potential that represents
the work done to add one more particle to the system. The first law
of Thermodynamics (1.38) is then written

dU = TdS − PdV + µdN. (1.57)

If there are more species of particle, a term µidNi needs to be added
for each species. If, in addition, there are forms of work other than
mechanical work PdV , then additional terms will appear in (1.57).
From (1.57) it follows that U = U(S, V,N) is a function of the
variables S, V,N and that(

∂U

∂S

)
V,N

= T,

(
∂U

∂V

)
S,N

= −P,
(
∂U

∂N

)
S,V

= µ.

(1.58)
Since U is an extensive function of the extensive variables S, V,N ,
it follows that

U(λS, λV, λN) = λU(S, V,N), (1.59)

where λ is a scale factor. Since λ is arbitrary, we can differentiate
with respect to λ. Setting λ = 1, we obtain

U =

(
∂U

∂S

)
V,N

S +

(
∂U

∂V

)
S,N

V +

(
∂U

∂N

)
S,V

N. (1.60)

Taking (1.58) into account,

U = TS − PV + µN, (1.61)
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from which we obtain an expression for the Gibbs potential (1.46)

G ≡ U − TS + PV = µN. (1.62)

It is also useful to consider the grand potential

Φ ≡ F − µN, (1.63)

which is a Legendre transform of the Helmholtz potential. From
(1.63) and (1.39), we have

Φ = −PV. (1.64)

1.11 Variational principles and Thermodynamic
Potentials

The second law expresses the fact that the entropy of an isolated sys-
tem is a maximum at equilibrium. For an isolated systems, therefore,
the quantity −S (the minus sign in the definition of S has historical
reasons) plays the role of a potential energy in a mechanical system,
thus justifying the name of thermodynamic potential. We show now
that also the other thermodynamic potential may interpreted anal-
ogously. Consider the two subsystems of Sec. 1.5, but now let us
assume that subsystem 2 is much larger than subsystem 1. System
2 can therefore be considered as a reservoir Fig. 7) at a fixed tem-
perature T (we drop the index 2). From (??) and using the fact
that (

∂S2

∂U2

)
V

=
1

T
(1.65)

we have (
∂Stot

∂U1

)
V

=
∂S1

∂U1

− 1

T
= 0. (1.66)

This equation corresponds to minimize the free energy of subsystem
1

F = U1 − TS1(U1). (1.67)

The maximum of the total entropy corresponds then to the minimum
of the free energy of subsystem 1 and, restricting the attention to
this system, F plays the role of a thermodynamic potential. Similar
arguments can be developed for systems kept in a floppy envelope,
i.e. at constant T, P,N , showing that, in this case, the potential G
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is minimized, and for all the other potentials introduced before. We
arrive therefore at the following variational principles

d(−S)|E,V,N ≥ 0
dF |T,V,N ≥ 0
dG|T,P,N ≥ 0
dH|S,P,N ≥ 0
dΩ|T,V,µ ≥ 0,

(1.68)

where the equalities hold for a reversible transformation.

1.12 Maxwell Relations

Figure 1.7: James Clerk Maxwell (Edimburgo, 13/06/1831 - Cambridge,
05/11/1879)

Suppose we want to express the quantity

∂S

∂V

∣∣∣∣
T,N

. (1.69)

Notice that we are considering here S as a function of T, V,N , which
however are not its natural variables but, instead, those of F . In
order to obtain a Maxwell relation one has to start from the natural
potential F and to derive it twice, with respect to V , as in the
original quantity (1.73), and in addition with respect to the variable
(T ) which is conjugate to the one (S) we are deriving in (1.73).
Indeed, in doing that, one recover expression (1.73) (possibly with a
minus sign)

∂

∂V

∂F

∂T

∣∣∣∣
V,N

= − ∂S

∂V

∣∣∣∣
T,N

. (1.70)
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Proceeding in the reverse order one has

∂

∂T

∂F

∂V

∣∣∣∣
T,N

= − ∂P

∂T

∣∣∣∣
V,N

. (1.71)

Enforcing the equality of the mixed derivatives, one arrives to the
Maxwell relation

∂S

∂V

∣∣∣∣
T,N

=
∂P

∂T

∣∣∣∣
V,N

. (1.72)

As a second example let us consider

∂S

∂P

∣∣∣∣
T,N

. (1.73)

(P, T,N) are the natural variables of G, that we must then derive
twice with respect to P and T . Proceeding as before we have

∂

∂P

∂G

∂T

∣∣∣∣
P,N

= − ∂S

∂P

∣∣∣∣
T,N

, (1.74)

and
∂

∂T

∂G

∂P

∣∣∣∣
T,N

=
∂V

∂T

∣∣∣∣
P,N

. (1.75)

We then arrive to a second Maxwell relation

∂S

∂P

∣∣∣∣
T,N

= − ∂V

∂T

∣∣∣∣
P,N

. (1.76)

Other Maxwell relations are, for instance,

∂T

∂V

∣∣∣∣
S,N

= − ∂P

∂S

∣∣∣∣
V,N

. (1.77)

and
∂V

∂S

∣∣∣∣
P,N

= − ∂T

∂P

∣∣∣∣
S,N

. (1.78)



Chapter 2

Random walk: An
introduction to Statistical
Mechanics

2.1 Preliminaries

Most of the systems we observe in nature - e.g. gases, liquids, solids,
electromagnetic radiations (photons) - are made of a very large num-
ber of particles. The study of such systems is difficult. Even when
the interactions among particles are rather simple, the huge number
of particles involved generates a complexity that can produce quite
unexpected behaviors. Examples include the sudden transition of a
liquid into a solid, the formation of patterns such as those found in
snow flakes, or the fascinating and extremely complex organization
which occurs in biological systems.

Macroscopic systems began to be studied from a phenomenologi-
cal point of view in the last century. The laws that were discovered
belong to the realm of Thermodynamics, as we mentioned in the pre-
vious chapter. However, in the second half of the last century, due to
the development of atomic theory, macroscopic systems began to be
studied from a microscopic point of view. It was such an approach
that gave rise to the field of Statistical Mechanics. Therefore, al-
though both Thermodynamics and Statistical Mechanics study the
same macroscopic systems, their approaches differ.

Thermodynamics studies macroscopic systems from a macroscopic
point of view, considering macroscopic parameters that characterize
the system such as pressure, volume, and temperature without ques-

23
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tioning whether or not the system is made of particles (e.g., atoms or
molecules). On the other hand, Statistical Mechanics studies macro-
scopic systems from a microscopic point of view, i.e., it examines how
systems made up of particles - atoms or molecules - exhibit behav-
iors governed by the laws of classical or quantum mechanics; its goal
is to predict the macroscopic behavior of the system in terms of the
system’s microscopic molecular dynamics. Unlike Thermodynamics,
Statistical Mechanics also studies fluctuations from equilibrium val-
ues. These fluctuations vanish in the thermodynamic limit where the
number of particles N and the volume V both tend to infinity while
the ratio ρ ≡ N/V remains finite. In such limit Statistical Mechanics
reproduces the laws of Thermodynamics. So Statistical Mechanics
not only contains Thermodynamics as a particular limit, but also
provides a microscopic basis and therefore a deeper understanding
of the laws of Thermodynamics.

How then do we study a macroscopic system made of about an
Avogadro (1024) number of particles? In principle, by assuming
some reasonable interactions among the particles, we could study
the equation of motion of a single particle and follow its evolution.
But such a task for a huge number of particles is impossible. Sup-
pose one attempted, in a single toss of a coin, to use the laws of
classical mechanics to predict the evolution of the coin movement
and thereby the final outcome. Even if one could take into account
all the interactions with the hand and with the air, one would need
to know exactly the initial conditions. These events are extremely
sensitive to initial conditions. Any infinitesimal change in the initial
conditions will be amplified dramatically, giving rise to a completely
different trajectory (a property called chaos).

One must resort to new concepts based on a probabilistic ap-
proach. A detailed knowledge of the system gained by attempting
to predict the exact evolution of all single particles is renounced. In-
stead of predicting the exact evolution of all individual particles, the
probabilistic approach is concerned only with the probability that
a given event occurs. Therefore the aim is to predict a distribution
probability for all microscopic events. Such a prediction is made as-
siomatically. From the probabilistic distributions one can evaluate
average quantities and the fluctuations around such averages.

In the case of a coin, which has no apparent asymmetry, it is
natural to assume that the probability that one of the two events
(e.g., heads) will occur is 1/2. This prediction obviously cannot be
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verified experimentally in a single event (i.e., one toss). How does
the theory compare with experiments? The experiments must be the
result of an average of many realizations. One needs to toss many
coins or a single coin many times. The frequency of heads is given
by

ω+ ≡ N+

N
, (2.1)

where N+ is the number of coins with an outcome of heads and N the
total number of coins. This frequence is an experimental quantity
that can be measured. In the limit N → ∞, the result will approach
1/2 if the theory is correct.

2.2 A non-equilibrium example: Unbounded Ran-
dom Walk

In this section we will develop the basic ideas of Statistical Mechan-
ics. (In a later chapter we will present a more detailed and precise
formulation.) To do this, we consider in detail the example of dif-
fusing particles in a viscous medium. To fix the idea, consider a
single molecule diffusing in air. The exact approach would be to
solve the dynamical equations for the molecules of the entire system
of {molecules + air}. The statistical mechanical approach is proba-
bilistic, namely it aims to calculate the probability for each possible
trajectory of the particle.

The essential ideas emerge if we first simplify the problem: we
discretize space and time and consider the motion in one dimension
(Fig. ?). Assume the particle begins at the origin and, at each
interval of time τ , takes a step of length a0 (lattice constant) to the
right with probability p or to the left with probability q ≡ 1− p. In
practice, each step corresponds to a collision with air particles, and
after each collision the molecule has lost completely any memory it
might have of its past history (in this case the process is called a
Markov process, and is said to be Markovian). The effect of the air
is taken into account in a probabilistic way. If there is symmetry
between left and right, we choose p = q = 1/2. Otherwise, if there is
a drift which makes the right or the left more favorable, p ̸= 1/2. We
consider the general case with p being a parameter. The problem is
called a random walk, or the drunkard’s walk. We will also use the
imagine of randomly moving ants.
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Eventually we want to be able to determine the probability that a
given ant that begins at time t = 0 at the origin will be at a distance
x = ma0 at time t = Nτ (i.e. after N steps), where m is an integer.
Consider first the following example

p(rrrℓ) = pppq
p(rrℓr) = ppqp
p(rℓrr) = pqpp
p(ℓrrr) = qppp,

(2.2)

where, e.g., p(rrrℓ) is the probability that the ant will take three
steps to the right (r) and one to the left (ℓ). Each of the four
sequences has the same probability of occurring, p3q, so the proba-
bility P4(3) that the ant will make a walk of four steps in which three
steps are to the right and one is to the left is the sum of the four
probabilities (since the events are mutually exclusive) P4(3) = 4p3q.
Sequences like those in Eqs. (2.2), i.e. rrrℓ etc..., are the most
complete description of the system in that the microscopic displace-
ments of the walker at each step is provided. Quantities like rrrℓ
can be then denoted as micro-variables. Next to this description one
can introduce a less detailed one by considering the variables n1 and
n2, namely the steps the particle moves to the right or to the left,
respectively. These are coarse, or macro-variables since their value
alone is not sufficient to describe all the microscopic evolution of the
system. For example all the microscopic sequences (2.2) have the
same values n1 = 3, n2 = 1 of the coarse variables n1, n2.

In general, the probability that a walker moves n1 steps to the
right and n2 = N − n1 steps to the left is given by the binomial
distribution

PN(n1) = CN(n1)p
n1qn2 , (2.3)

where
N ≡ n1 + n2, (2.4)

and the binomial coefficient

CN(n1) ≡
(
N
n1

)
=

N !

n1!(N − n1)!
(2.5)

is the degeneracy, i.e., the number of independent walks in which n1

steps are right (see Appendix A). The displacement m is related to
n1 and n2 by

m = n1 − n2. (2.6)
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First we calculate the mean displacement

⟨m⟩ = ⟨n1⟩ − ⟨n2⟩. (2.7)

To calculate ⟨n1⟩ , we must add up all the mutually indepen-
dent ways of taking n1 steps to the right, each with the appropriate
weight, i.e.,

⟨n1⟩ =
N∑

n1=0

n1PN(n1) =
N∑

n1=0

n1CN(n1)p
n1qn2 . (2.8)

To evaluate (2.8), we introduce the generating function (or, borrow-
ing a terminology from equilibrium Statistical Maechanics, partition
function)

Z(x, y) ≡
N∑

n1=0

CN(n1)x
n1yn2 . (2.9)

From (2.9) we get

x
∂Z

∂x

∣∣∣∣ x = p
y = q

=
N∑

n1=0

n1CN(n1)x
n1yn2

∣∣∣∣∣ x = p
y = q

, (2.10)

which coincides with ⟨n1⟩ . Using the binomial expansion (see Ap-
pendix A), the sum in (2.9) is simply

Z(x, y) = (x+ y)N , (2.11)

so

x
∂Z

∂x

∣∣∣∣ x = p
y = q

= Nx(x+ y)N−1
∣∣
x = p
y = q

= Np (2.12)

Therefore
⟨n1⟩ = Np. (2.13)

We calculate ⟨n2⟩ in exactly the same way,

⟨n2⟩ = y
∂Z

∂y

∣∣∣∣ x = p
y = q

= Nq (2.14)

Substituting (2.13) and (2.14) into (2.7), we find the mean value for
m after N steps,

⟨m⟩ = N(p− q). (2.15)
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In addition to the mean ⟨m⟩ , it is important to calculate the
fluctuation about the mean,

⟨(∆m)2⟩ = ⟨(m− ⟨m⟩)2 = ⟨m2⟩ − ⟨m⟩2. (2.16)

From (2.6), n1 = (m+N)/2 and

⟨(∆m)2⟩ = 4(⟨n2
1⟩ − ⟨n1⟩2). (2.17)

To calculate ⟨n2
1⟩, we again use the generating function approach

⟨n2
1⟩ =

[
x
∂

∂x

(
x
∂Z

∂x

)]
x = p
y = q

. (2.18)

Straightforward calculation gives

⟨n2
1⟩ = Np+N(N − 1)p2 = (Np)2 +Npq = ⟨n1⟩2 +Npq (2.19)

Finally, from (2.16)
⟨(∆m)2⟩ = 4Npq. (2.20)

The width of the range over which m is distributed, i.e., the root
mean square displacement, is given by the square root of the fluctu-
ation

w ≡ [⟨∆m2⟩]1/2 =
√
4pqN. (2.21)

What is the meaning of the mean value ⟨m⟩ and its root mean
square w? If we consider many walkers, each performing random
walks, then the average displacement of all the walkers coincides
with the mean. But if we ask what should be a typical displacement
m∗ of one walker chosen at random, then m∗ satisfies the following
relation

⟨m⟩ − w ≤ m∗ ≤ ⟨m⟩+ w. (2.22)

Equation (2.22) places different bound on m∗ depending if p = q or
p ̸= q. If p = q, then ⟨m⟩ = 0 from (2.15), and −w ≤ m∗ ≤ w.

However if p ̸= q, ⟨m⟩ ∼ N while w ∼
√
N , so for large N it is

⟨m⟩ <∼ m∗ <∼ ⟨m⟩. Hence

m∗ ∼
{ √

N p = q
N p ̸= q

, (2.23)

If we interpret the random walker as a particle diffusing on a
lattice with lattice constant a0 , then the displacement after N col-
lisions separated by a time interval τ is ⟨m⟩a0 , where t = Nτ is the
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time. Hence the typical displacement after a time t is, from (2.23),

m∗a0 ∼
{ √

Dt p = q
V t p ̸= q

, (2.24)

where D = a20/τ is the diffusion constant and V = (p − q)a0/τ is
the drift velocity. Eq. (2.24) was one of the main results of one of
the famous 1905 papers by A. Einstein. This equation shows that
the typical displacement of particles increases indefinitely with time.
The system therefore does never become stationary and equilibrium
is never reached. The (unbounded) random walk is indeed a proto-
typical example of non-equilibrium statistical-mechanical problem.
Since the evolution of the particle is fully described by its position
at each time instant, while n1 only informs on the position after N
steps, Eq. (2.3) provides the probability of occurrence of what we
have called (in a somewhat broad sense) a coarse, or macro-variable,
namely a quantity to which many more fundamental and detailed
micro-variables contribute (see for instance the four possible ways
of obtaining n1 = 3 with N = 4 expressed by Eqs. (2.2), and is
therefore not the most complete possible information on the system.
Notice that this probability depends on time (i.e. on N), since the
system is not stationary. The determination of PN(n1) has been
possible because, due to the simplicity of the considered model, the
probability of the detailed, or micro-variables - i.e. those in Eqs.
(2.2) - are explicitly known. Its computation is only doable for very
few (simple) statistical model while it remains, in general, unknown.
The situation is different for equilibrium system, where, as we will
see, a general receipt exists.

2.2.1 Gaussian Approximation

We next show that the distribution (2.3) in the limit of very large
N can be well approximated by a Gaussian distribution. To this
end, we consider PN(n1) for large N as a continuous function of the
continuous variable n1, and then we expand lnPN(n1) around its
maximum value n1 = n1

lnPN(n1) = lnPN(n1)+
1

2

∂2 lnPN(n1)

∂n2
1

∣∣∣∣
n1=n1

(n1−n1)
2+. . . (2.25)
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where we omit the first derivative term since

∂ lnPN(n1)

∂n1

∣∣∣∣
n1=n1

= 0. (2.26)

Ignoring higher order terms, we immediately find the Gaussian dis-
tribution

PN(n1) = PN(n1)e
−(1/2)λ(n1−n1)2 , (2.27)

with

λ = − ∂2 lnPN(n1)

∂n2
1

∣∣∣∣
n1=n1

. (2.28)

We must now compute n1 , λ and show that higher order terms in
(2.25) can be neglected.

From expressions (2.3) and (2.5) it follows that

lnPN(n1) = lnN !− ln(N − n1)!− ln(n1)! + n1 ln p+ (N − n1) ln q.
(2.29)

Stirling’s approximation for large n (Appendix C) states that

lnn! ≃ n lnn− n. (2.30)

Rewriting (2.29) in this approximation, and requiring that its first
derivative be zero, we find that the value n1 is given by

n1 = Np, (2.31)

which shows that n1 is the exact average value ⟨n1⟩ of (2.8). The
second derivative is given by

λ = − ∂2 lnPN(n1)

∂n2
1

∣∣∣∣
n1=n1

= (Npq)−1, (2.32)

and, in general, the kth derivative by

∂k lnPN(n1)

∂nk
1

∣∣∣∣
n1=n1

∼ 1

(Npq)k−1
. (2.33)

Hence, for large N , higher order terms in (2.25) can be neglected
for large N (because of the higher negative power of N in the terms
(2.33) with respect to the one in (2.32)). More precisely, by com-
paring the quadratic term in Eq. (2.25) with the following one, one
concludes that the Gaussian approximation (2.27) is valid, provided
that

|n1 − n1| ≪ Npq. (2.34)
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On the other hand, if

(n1 − n1)
2

Npq
≫ 1, (2.35)

PN(n1) and its Gaussian approximation are much smaller than PN(n1).
Therefore when (2.34) starts to be unsatisfied, namely |n1 − n1| ∼
Npq, Eq. (2.35) is satisfied, provided that

Npq ≫ 1. (2.36)

Therefore condition (2.36) assures that the Gaussian approximation
is valid in the entire region where PN(n1) is not negligible. Close
to p = 1 or p = 0 when (2.36) is no more satisfied, and a different
approximation is more appropriate, leading to the Poisson distribu-
tion. Clearly, if the interest is focused in the region in which PN(n1)
is very small, meaning that a prediction on very rare fluctuations is
required, the Gaussian approximation (or the Poisson one if p = 1 or
p = 0) breaks down and a more sophisticated theory, the so-called
large deviation theory must be introduced.

Finally, the value of PN(n1) can be obtained by using the con-
straint that the sum over all probabilities is unity

N∑
n1=0

PN(n1) = 1. (2.37)

Using (2.27) and (2.32) and using the variable x = n1−n1√
N

one arrives
at

N∑
n1=0

PN(n1) = PN(n1)
√
N

(N−n1)/
√
N∑

x=−n1/
√
N

e−
1
2

x2

pq ·∆x = 1, (2.38)

where ∆x = 1/
√
N and in the sum the (non integer) variable x runs

from −n1/
√
N to (N − n1)/

√
N in steps of amplitude ∆x. In the

limit of large N , for p ̸= q (i.e. n1 ̸= 0), x runs over the whole
interval from x = −∞ to x = ∞, ∆x → 0 and the sum can be
replaced by an integral, hence

N∑
n1=0

PN(n1) ≃ P (n1)
√
N

∫ ∞

−∞
e−x2/2pqdx = 1. (2.39)
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(For p = q (n1 = 0) one can proceed analogously but the integral
runs only on positive values of x.) Evaluating the Gaussian integral,
from (2.39) we have

PN(n1) =
1√

2πNpq
. (2.40)

Finally from (2.27), (2.32), and (2.40) the distribution PN(n1) is
given by

PN(n1) =
1√

2πNpq
exp

[
−(n1 − n1)

2

2Npq

]
, (2.41)

which is a Gaussian distribution centered around n1 ≡ pN of width
w = ⟨(n1 − n1)

2⟩1/2 =
√
Npq. Expressing (2.41) in terms of the

displacement m = 2n1 − N , we obtain the probability PN(m) =
(1/2)PN((m+N)/2) that after N steps the net displacement is m

PN(m) =
1

2

1√
2πNpq

exp

[
− 1

8Npq
(m−m)2

]
, (2.42)

which is also a Gaussian, with a different mean

m = N(p− q), (2.43)

and twice the width,

⟨(∆m)2⟩ = 4Npq. (2.44)

Note that these results agree with (2.15) and (2.20).
The generalization of the random walk to higher dimensions can

be carried out using the same approach. The Gaussian distribution
will appear often in Statistical Mechanics. A given distribution f(x)
can have a Gaussian form based on the following general require-
ments: (i) f(x) has a maximum for x = x0 ; (ii) ln f(x) can be
Taylor expanded around x0

ln f(x) = ln f(x0) +
1

2

∂2 ln f(x)

∂x2

∣∣∣∣
x=x0

(x− x0)
2 + . . . (2.45)

and higher order terms can be neglected. Under such requirements
one finds

f(x) = f(x0)exp

[
−1

2
λ(x− x0)

2

]
, (2.46)
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with λ given by

λ ≡

∣∣∣∣∣
(
∂2

∂x2
ln f(x)

)
x=x0

∣∣∣∣∣ . (2.47)

An example is
f(x) = [g(x)]N , (2.48)

with
g(x) = xe−x/x0 . (2.49)

Hence g(x) has a maximum around x0 and can be expanded around
x0. This example also shows that by expanding not ln f(x) but
rather f(x) itself around x0 , one would not allow the truncation of
the expansion in the limit of N large.

2.3 An equilibrium example: Random Walkers
in a Box

Consider an adiabatic box with N non-interacting particles which
we ideally divide into two equal parts. Each particle performs a
three-dimensional random walk analogous to the one considered in
Sec. 2.2, except that now the walkers are restricted inside the box
(we can imagine that they are reflected back on the boundaries).
If we prepare the system with all the particles on one part of the
box by compressing them by means of a moving wall, and then we
remove the wall a non-equilibrium process will take place where the
gas of particles freely expand in order to occupy all the available
space, until equilibrium is reached. Imagine to take W consecutive
pictures in a time interval τ . Each picture represents a microscopic
configuration at a certain time. The microscopic (detailed) variables
necessary to describe the system are the positions qi (i = 1, . . . , N)
of all the particles and their momenta pi at each instant of time. A
macroscopic (coarse) variable associated with the system is the aver-
age number of particles ⟨n1⟩ in the left half of the box. This quantity
depends on time except when equilibrium is reached. If we want to
make a prediction of such a value, the approach of classical mechan-
ics would be to solve the equation of motion, given the interaction
potential among the particles and their initial conditions, positions
and velocities. Once the coordinates of the particles are calculated
as functions of time, one would have to value the number of particles
in the left part of the box. As we have seen in the previous sections
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Statistical Mechanics takes a probabilistic approach to this problem.
The techniques of Sec. 2.2 needs to be upgraded however, because
the reflections on the walls must be taken into account. This results
in a more complicated problem. However, if we are only interested
in the equilibrium state, the problem can be further simplified, as
we discuss below.

Assuming the crude random walk model of the previous Section,
we do not need to specify the velocity of the particles since any of
them moves a quantity a0 in a time interval τ , so that there is a
unique velocity. A microstate is the state of the system at some
time as detailedly described by all the necessary microvariables. In
the present case, therefore, microstates can be labelled by the mi-
crovariables {qi}. Since particles are independent, the probability
of the microstate PN({qi}) factorizes into the product of the single
particle probability PN({qi}) = ΠN

i=1Pi(qi). Since particles are iden-
tical all the Pi must have the same functional form, and they do not
depend on time due to the stationarity of equilibrium. Moreover,
because space is homogeneous in this model, the Pi’s cannot depend
on space either, so that Pi(qi) ∝ V −1, where V is the volume of the
system. One arrives then to the conclusion that all the microstates
have the same probability. This is general property of isolated sys-
tems, denoted as equi-probability a priori, as we will see in the next
sections.

Next, we want to compute the probability P (n1), namely the
probability that the macrovariable n1 assumes a certain value (no-
tice that we improperly use the same symbol P also for this, differ-
ent, probability). One can also use the terminology of macrostate,
or macroscopic configuration, to denote the set of microstates which
share the same value of n1. As in the random walk problem of Sec.
2.2, the first step is to assume a form for the probability p that a
given particle will be on the left side of the box (hence q = 1 − p
is the probability of being on the right side). In equilibrium p must
not depend on time and the left-right symmetry leads to p = 1/2.
Assuming the particles are distinguishable, a given configuration is
characterized by indicating which particle is on the left and which is
on the right. For example, 1 particle has 2 possible configurations,
while 2 particles have 4 possible configurations (see Fig. XX). Since
the particles are weakly interacting, we can assume that the proba-
bility for a configuration of two particles is the product of the prob-
ability of the configurations of a single particle. Each microscopic
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configuration has therefore the same probability of being realized:
1/4. The probability that one particle will be on the left and the
other on the right is

p(1, 1) = 2 · 1
4
=

1

2
. (2.50)

Since 2 is the number of configurations that realizes that event, it
represents its degeneracy.

In general the probability of finding n1 particles on the left and
n2 = N − n1 on the right is given (see Appendix A) by

PN(n1) =

(
N
n1

)
pn1qn2 (2.51)

where (
N
n1

)
=

N !

n1!(N − n1)!
(2.52)

is the degeneracy, i.e., the number of microscopic configurations that
realize the event that n1 particles are on the left and n2 = N−n1 on
the right. Eq. (2.51) is formally identical to the probability (2.3) of
the non-equilibrium case. However N is now the number of particles,
instead of time, and the distribution is time-independent, as it must
be for a stationary state.

The probabilities p and q have been chosen insofar to be p = q =
1/2, but if the box is divided into two unequal volumes V1 and V2 ,
then

p =
V1

V1 + V2
q =

V2
V1 + V2

. (2.53)

The important concept to be stressed here is degeneracy. For exam-
ple, in the case of p = q = 1/2, although each microscopic configura-
tion has the same weight, what makes a macroscopic configuration
more or less probable is the number of configurations required to
realize the macrostate. As we will see, this something related to
the entropy, and the evolution of the system toward the macroscopic
equilibrium state with maximum degeneracy corresponds in this case
to the entropy increase in a non-reversible transformation (Sec. 1.3).
As we have shown in the previous section, for large values of N , the
probability distribution becomes

PN(n1) =
1√

2πNpq
exp

[
− 1

2Npq
(n1 − n1)

2

]
(2.54)
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with n1 = Np = N/2.

The fluctuation of particles is
√
N , which means that the typical

number of particles n1 , on the left of the box, is given by

N

2
−

√
N ≤ n1 ≤

N

2
+
√
N. (2.55)

Let us introduce the intensive quantity

x ≡ n1

N
, (2.56)

where x is the fraction of particles on the left of the box. From (2.55)

1

2
−

√
N

N
≤ x ≤ 1

2
+

√
N

N
. (2.57)

For N → ∞, the only possible value is x = 1/2.
To study the fluctuations of x about the average value x = 1/2

when N is finite, we define PN(x)dx as the probability of finding a
fraction between x and x + dx. To calculate PN(x), we first relate
PN(x) to PN(n1) of (2.54),

PN(n1)dn1 = PN(x)dx, (2.58)

where, from (2.56),
dn1 = Ndx. (2.59)

From (2.53), (2.54), and (2.58) we find for the equivolume case,
p = q = 1/2,

PN(x) =

√
N√
π/2

exp

[
−2N

(
x− 1

2

)2
]
. (2.60)

Distribution (2.60) in the intensive variable x has a width propor-
tional to N−1/2 and an amplitude proportional to N1/2 and, in the
limit N → ∞, tends to a delta function peaked around its mean
value x = 1/2. This means that although every microscopic con-
figuration is allowed and has the same probability, the macroscopic
configuration corresponding to x = 1/2 is almost surely realized
by those microscopic configurations that are dominant in the limit
N → ∞. Thus it occurs with probability 1 and all other macroscopic
states corresponding to x ̸= 1/2 have zero probability of occurring.

The examples of this Chapter teach us that it is possible to predict
macroscopic properties of a system without following the motions of
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all the single particles. The approach is based on a probabilistic de-
scription and on some reasonable assumptions about a priori prob-
ability. In equilibrium cases, the average quantities calculated must
be compared with time average measurements on the system. In the
large N limit, the distribution PN(x) tends to a Gaussian around
the mean value, which also corresponds to the most probable one.
The state characterized by this most probable value is extremely
degenerate, i.e., the limit N → ∞ coincides with the totality of mi-
croscopic configurations. All the other macroscopic states have zero
probability of occurring.

In the next chapter, we will formalize these examples in a coherent
conceptual framework, as we will address the fundamental postulates
of statistical mechanics.



Chapter 3

The Postulates of Statistical
Mechanics

3.1 Motion in Γ-Space

As already stated above, Statistical Mechanics studies macroscopic
systems by examining their microscopic elements, elements that, ac-
cording to specific cases, obey the laws of classical or quantum me-
chanics. Using the laws of quantum mechanics, one must find the
solution – given the wave function ψ at t = 0 – to the time-dependent
Schrödinger equation

ih̄
∂ψ

∂t
= Hψ, (3.1)

whereH is the Hamiltonian of the system and ψ is the wave function,
the spatial coordinates of the particles.

In classical mechanics, a microscopic state of a 3-dimensional sys-
tem is characterized by the coordinates q ≡ {q1, . . . , q3N} and its
conjugate momenta p ≡ {p1, . . . , p3N}. The evolution of the system
is found solving the Hamiltonian equations{

q̇i(t) = ∂H/∂pi
ṗi(t) = −∂H/∂qi

i = 1, . . . , 3N. (3.2)

For fixed initial conditions{
qi(t0) = qi,0
pi(t0) = pi,0

i = 1, . . . , 3N, (3.3)

there is only one solution{
q(t) ≡ {q1(t) . . . q3N(t)}
p(t) ≡ {p1(t) . . . p3N(t)}

, (3.4)

38
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which gives deterministically the 6N coordinates in both the future
and the past.

Whatever the description is (classical or quantum) there is a num-
ber N of order N (the number of microscopic constituents) of vari-
ables, or quantum numbers, which depend on time. The evolution
of such variables can be described as the motion of a representative
point (see Fig. ...) in the F -dimensional space (F = 6N for a clas-
sical system described by Eqs. (3.2)) of the microstates, denoted as
Γ space (also phase-space for classical systems). More precisely, the
representative point moves on the subspace (or iper-surface) which is
compatible with the values of the control parameters. For instance,
for an isolated systems only the microstates with an assigned energy
are accessible. Since Γ is F dimensional, by fixing a small num-
ber of control parameters the allowed Γ space remains of very high
dimensionality.

Practically, the motion of the representative point in Γ cannot be
determined for the following reasons

• Since N is of the order of the Avogadro number (∼ 1024) the
number of coupled equations in (3.2) is by far impossible to be
managed even by the most powerful computer.

• Even if some thecnique to solve all these coupled equations
would exist, we would need the initial conditions of all the F
variables, which is impossible to measure. Not only this, ev-
ery inaccuracy in the determination of such initial values would
make any prediction invalid due to the chaotic nature (extreme
sensitivity to initial conditions) of the equations.

Statistical Mechanics provides a way out of this discouraging sce-
nario, by resorting to s probabilistic approach. The following con-
siderations suggest its predictive power:

• Despite the incredible complication of the governing equations
of classical or quantum mechanics, at least in equilibrium the
very small number of thermodynamic control parameter needed
to describe a macroscopic state suggests that some statistical
regularity of a collective type underlys the problem.

• Despite the statistical description is only probabilistic, so that
only averages can be obtained, the effect of fluctuations turn
out to be very so small, due to the incredibly large value of N ,
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to render Statistical Mechanics practically exact. For example,
by considering only 10−2 moles of a perfect gas in contact to
a reservoir at room temperature, it is possible to compute the
relative fluctuations of its internal energy U . One has a number
as small as δU/U ≃ 10−11. In an instantaneous measurement
the probability of finding a relative deviation from the average
of order 10−6 is of order 10−3·1015 !!

3.2 Measuring is averaging

Any macroscopic variable A is a function of the 6N coordinate A =
A[q(t), [p(t)]. Since any instrument has a finite measurement time t
any measure of the macroscopic variable A corresponds to doing an
average Aobs over a suitable interval of time t

Aobs ≡ A =
1

t

∫ t

0

A[q(t),p(t)]dt. (3.5)

For example, the pressure is obtained by using an apparatus which
does not measure the instantaneous value of the force exerted by
the particles on the unit surface, but a time average over a time
interval τ that depends on the apparatus. Analogously, to measure
the temperature, a thermometer gives the average value of the kinetic
energy. Thermodynamic systems in equilibrium are chaotic in the
sense that the evolution at some time t + τ , where t is a generic
instant and τ a short time interval denoted as correlation time, does
not keep memory (in not correlated with) the microstate assumed at
the earlier time t. Then Eq. (3.5) amount to say that an average over
t/τ independent instantaneous measurements is done. This, however,
is not the only source of averaging hidden in a usual measure. Indeed
any instrument has a finite measuring tip, of a certain size (volume)
v. Then, if A(r⃗) is the (instantaneous) local value of the observable
A at position r⃗, the value read on the instrument is

Aobs ≡ A =
1

v

∫
v

A[q(t),p(t)]dr⃗. (3.6)

Thermodynamic systems in equilibrium have usually a short coher-
ence length ξ. Simililarly to τ , but in the realm of space instead of
time, ξ is the typical distance over which the behavior of the system
becomes independent. Then Eq. (3.6) amount to say that an average
over v/ξd independent local measurements is done.
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3.3 Statistical Ensembles

In principle, to find the theoretical outcome of a given measurement,
one should be able to solve the equation of motion and then calculate
the integral (3.5), which we have already discussed to be impossible.
How, then, does one calculate A? We must renounce any notion
involving the coordinates of the system at each instant of time and
substitute the time average with another average called the ensemble
average, which we will see gives (under certain hypotheses) the same
value of the time average but in a much simpler way.

Consider an isolated system of N classical particles described by
Eqs. (3.2) with certain control parameters (e.g. a fixed energy E
and a volume V ). Consider an ensemble made of N copies macro-
scopically identical to the given system, i.e., with the same values of
the control parameters. At any given instant of time t0 , each system
will be in a given configuration {q,p}(k) in which k labels the sys-
tems of the ensemble k = 1, 2, . . . ,N . Any macroscopic dynamical
variable will assume a value Ak ≡ A(qk,pk) in the system k. The
ensemble average is given by

⟨A⟩ens =
1

N

N∑
k=1

Ak, (3.7)

with N extremely large (N → ∞).
To characterize the ensemble and calculate the ensemble average,

we must give the distribution of the systems over all microscopic
configurations described by the coordinates

{q,p} ≡ {q1 . . . q3N , p1 . . . p3N}. (3.8)

Since this cohordinates represent a point in Γ, the microstates of the
N systems of the ensemble can be represented by N points in phase
space.

The distribution that characterizes the ensemble is described by
a function ρ(q, p) defined in phase space such that

dN = ρ(q,p)dqdp, (3.9)

where dN is the number of systems characterized by a microscopic
state represented in phase space in the elementary volume dqdp.
The ensemble average is given by

⟨A⟩ens =
∫
A(p,q)ρ(p,q)dqdp∫

ρ(p,q)dqdp
, (3.10)
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where ∫
ρ(q,p)dqdp = N . (3.11)

As we will see, the form of ρ is done assiomatically.

3.4 Liouville Theorem

Figure 3.1: Joseph Liouville (Saint-Omer, 24/03/1809 - Parigi, 08/09/1882)

The distribution of points in phase space at time t0 is character-
ized by the distribution ρ(q,p) ≡ ρ(q,p, t0). As time evolves, each
point in phase space moves according to the Hamiltonian equations.
If this fundamental postulate describes a system in equilibrium, then
the distribution (3.24) at time t0 must equal the distribution at any
time t. At time t, the points will in principle be described by a new
function ρ(q,p, t). However, we will show that such a distribution is
time-independent as a consequence of Liouville’s Theorem, namely

ρ(q,p, t0) ≡ ρ(q,p, t). (3.12)

This result will support the validity of the postulate of the equal a
priori probability that applies to equilibrium systems.

The purpose of the Liouville Theorem is to give the evolution
equation for ρ(q,p; t). Since the number of points represents the
number of systems N , this number is conserved. Therefore we can
write a continuity equation

∇⃗ · J⃗ +
∂ρ

∂t
= 0, (3.13)

where ρ is the density of points, J⃗ = ρv⃗ the flux, and v⃗ = v⃗(q,p)
the velocity of the point (q,p) in phase-space. The components of
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the phase-space velocity are

v⃗ ≡ (q̇1 . . . q̇3N , ṗ1 . . . ṗ3N). (3.14)

Therefore

∇⃗ · J⃗ =
3N∑
i=1

(
∂

∂qi
(ρq̇i) +

∂

∂pi
(ρṗi)

)

=
3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ρ

∂q̇i
∂qi

+ ṗi
∂ρ

∂pi
+ ρ

∂ṗi
∂pi

]
. (3.15)

From the Hamiltonian equations (3.2),

∂q̇i
∂qi

=
∂H
∂qi∂pi

and
∂ṗi
∂pi

= − ∂H
∂pi∂qi

, (3.16)

and (3.15) becomes

∇⃗ · J⃗ =
3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ρ

∂H
∂qi∂pi

+ ṗi
∂ρ

∂pi
− ρ

∂H
∂pi∂qi

]

=
3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]
, (3.17)

Finally, from (3.13) and (3.17),

∂ρ

∂t
+

3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]
= 0. (3.18)

The l.h.s. is readily recognized to be dρ
dt
, hence

dρ

dt
= 0. (3.19)

This is the Liouville theorem, which states that the representative
points move in Γ-space as an incompressible fluid. Notice that no
assumptions on the state of the system (e.g. if in equilibtium or not)
has been done. From (3.2) we can write (3.18) in the equivalent form

∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

)
= 0, (3.20)

where the sum is called the Poisson bracket {ρ,H}.
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3.5 Ergodic Hypothesis

In order to proceed we must stipulate to substitute time averages
with ensemble averages (further averaging over space does not change
the discussion that follows and we forget it now). In order to simplify
the discussion let us for the moment assume that the instrument is
very slow, i.e. t → ∞. In this case the difference between the aver-
ages (3.5) and (3.10) is that the average in the latter runs over all the
possible states (compatible with the control parameters), while in the
former only on those actually reached by the dynamical trajectory
of the representative point in Γ. Assuming that the two averages
coincides is equivalent to introduce the so called ergodic hypothesis,
which states that the trajectory of the given system must, in the
course of time, visit in a uniform way all the accessible phase space.

There have been many efforts to prove the ergodic hypothesis
but results are limited to very few (and somewhat physically trivial)
cases.

The role of a finite t is even harder to be controlled theoretically.
It is an empirical fact that, due to the smallness of τ (and of ξ),
any experimental measurement de facto realizes an average over a
sufficiently large number of independent instances to be assimilated
to a situation with t = ∞.

3.6 Guessing the correct ensemble

We now must choose an ensemble which has the property that (for
an ergodic system) the ensemble average of any dynamical quantity
coincides with the time average of the given system. To do so, we
must make an intuitive choice and compare its consequences with
experimental data. This intuitive approach can only be done for
systems in equilibrium. For non-equilibrium systems a theory does
not yet exists.

3.6.1 A Suggestion from Monsieur Liouville

Liuville’s theorem can suggest us how to guess the correct form of ρ
for a system of N particles whose control parameters are U and V .
If ρ(q,p, t) must describe an equilibrium distribution, then

∂ρ

∂t
= 0, (3.21)
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so ρ(q,p, t) = ρ(q,p). From Liouville’s theorem (3.15) it follows

3N∑
i=1

[
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]
= 0, (3.22)

and therefore ρ(p,q) must be necessarily a constant of motion. Then
a possiblity is that ρ is a function only of constant of motion, like
energy or momentum. Making the further assumption that ρ is
chosen to be a function solely of the energy, i.e., ρ(p,q) = ρ̃[H(p,q)],
and that the distribution must be equal to zero in the region of phase
space not allowed, it follows

ρ̃[H(p,q)] ≡
{

const. if E ≤ H(p,q) ≤ E+ δE
0 otherwise,

(3.23)

Note that we have allowed the energy to lie in a small range δE
rather to be strictly fixed. This has some mathematical advantages
and, moreover, conforms to real situations since it is impossible to
completely isolate a system from the universe. Let us stress that a
necessary consequence of (3.21) and Liouville’s theorem is only that
ρ(q, p) must be a constant of motion, while the particular choice
that ρ(q, p) is a function of only the energy and not of all the other
constant of motion, is an assumption.

3.6.2 Equal a Priori Probability and the Microcanonical
Ensemble

An alternative route to infer the properties of the equilibrium en-
semble for a system with fixed energy in [E,E + δE] and volume
V , is to make the hypothesis that the probability measure ρ is dis-
tributed uniformly over the allowed configurations. This hypothesis
is known as the postulate of equal a priori probability and is ex-
pressed by saying that ρ(q,p) is constant in the accessible phase
space, i.e., the phase space corresponding to those microstates with
a number of particles N confined to a volume V and with energy
E ≤ H(p,q) ≤ E + δE, namely

ρ(q,p) ≡
{

const. in the region of allowed phase-space
0 otherwise.

(3.24)

Clearly this is the same probability measure of Eq. (3.23). Let us
anticipate that it is not necessary to fix δE since we will show that
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the calculations based on distribution (3.24) do not depend on the
value of δE in the limit N → ∞.

The postulate of equal a priori probability is based on the intuitive
idea that all microscopic configurations are equivalent. The rationale
for this hypothesis is that, since the energy is fixed, there is no reason
to privilege some configurations by giving them a different weight.
In the same way there is no reason to give a different weight to the
toss of a coin or to the configurations of the particles in the box
considered in the previous chapter.

There is no general proof for this hypothesis. We therefore assume
it as a postulate, a working hypotesis, and then confront all the
consequences with the experiments. As long as the agreenment with
the experiments is correct we accept the postulate. On the contrary
in absence of agreement we should be ready to question the postulate
(see, e.g., the book Grandi, Foundation of Statistical Mechanics for
further insights).

If the given system is not in equilibrium, we cannot make the
assumption (3.24). For example, in the case of the particles in a
box, if we prepare the system at t = t0 in which all particles are on
the left side of the box, not all configurations have the same weight.
In fact, the system in this case will evolve and a macroscopic quantity
such as the fraction of particles in the left side of the box will change
in time until it reaches its equilibrium value.

3.6.3 Consistency with the Liouville Theorem

Since the partial differential equation (3.18) contains only the first
derivative with respect to time, a solution that satisfies (3.18) and
coincides at t = t0 with the initial condition ρ(q,p; t0) = ρ(q,p) is
the only solution. The distribution ρ(q,p; t) = const. with respect
to both the variable {q,p} and the time t is a solution of (3.18)
and coincides at t = t0 with the initial condition ρ(q,p; t0) = const.
Therefore a uniform distribution in phase space at time t0 will remain
uniform for all t,

ρ(q,p; t) = ρ(q,p; t0). (3.25)

Hence the hypothesis that the equal a priori distribution describes
a system in equilibrium is consistent with Liouville’s theorem. Let
us notice, however, that this does not guarantees the equal a priori
distribution to be the correct one. Indeed, we will see that such a dis-
tribution is not suited for an ensemble where the control parameters
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are not U, V,N .



Chapter 4

The Connection with
Thermodynamics

4.1 Degeneracy

In the previous chapter we have stressed that Statistical Mechanics is
based on a probabilistic approach. The basic postulate of Statistical
Mechanics states that, given a system with fixed external parameters
N,U, V , there is an equal probability of finding the system in any of
its microscopic states. If the number of microscopic states allowed is
very limited (e.g., one), we know exactly in what microscopic state
the system is, while if it is large, our ignorance of which microscopic
state the system is in is also large. Some explicit realizations of this
fact have been discussed in Sec. 2. We shall see that this degeneracy
of states plays a fundamental role in Statistical Mechanics, and is a
new concept not contained in classical or quantum mechanics.

Before we explore the meaning of this degeneracy, we offer first
an idea of how this quantity behaves as a function of the number of
degrees of freedom F . We define Ω(E) as the number of states be-
tween E and E+δE. Notice that we have assumed that microstates
are countable. This is not the case for a classical system as, for in-
stance, a gas, whose microstates are labelled by a set of continuous
variables (positions and momenta of each molecule). An extension
to the case of systems described in terms of continuous variables will
be given in Sec. 4.5. If ϕ(E) is the number of states between the
ground state E0 and E

Ω(E) =
∂ϕ

∂E
δE (4.1)

48
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Let us consider a box of size L and N particles so weakly interacting
that we can consider them to be free. We calculate ϕ(E) using
quantum mechanics. Each particle has a quantized energy

ϵ =
h̄2π2

2mL2
n2, (4.2)

where n2 = n2
1 + n2

2 + n2
3 and n1, n2, n3 = 0, 1, 2 . . . are quantum

numbers referring to the three degrees of freedom of a free particle.
For a single degree of freedom, the number of states between n and
n + δn is proportional to n δn (a rough way to understand this is
the following: if the ni were continuous variables this number would
have been the area 2πnδn of the region between the two circles of
radii n and n+ δn.) Therefore, the number of states φ(ϵ) between 0
and ϵ grows as n ∝

√
ϵ, and

φ(ϵ) ∼
√
ϵ. (4.3)

For each degree of freedom there is a factor as in (4.3). Therefore,
for an F = 3N degrees of freedom,

ϕ(E) ∼ [φ(ϵ)]F ∼
(
E

F

)F/2

(4.4)

with E = Fϵ.
More generally, for a system of interacting particles we may expect

ϕ(E) ∼ (E − E0)
αF , (4.5)

where we have introduced the possibility that the ground state has
a finite energy E0 and α is of the order of unity. From (4.1) we have

Ω(E) = αf(E − E0)
αF−1δE, (4.6)

and, since αF ≫ 1 one has

Ω(E) ∼ (E − E0)
αF , (4.7)

so Ω(E) has the same behavior as ϕ(E). Since we are interested in
the order of magnitude and αf is of the order of F , we write

Ω(E) ∼ (E − E0)
F . (4.8)

Thus we see that Ω is a rapidly increasing function of the energy
difference from the ground state energy.
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4.2 Statistical Definition of the Temperature

Let us explore the properties of this function. Consider the systems
1 and 2 of the right panel of Fig. 1.1 separated initially by a barrier
that does not allow the exchange of energy. If E(1) and E(2) are
the energies of system 1 and 2, the total number of configurations
allowed for the combined system 1 + 2 is

Ω
(1+2)
b = Ω(1)(E(1))Ω(2)(E(2)), (4.9)

(the index b reminds that in this initial configuration there is the
barrier (later it will be removed)) where Ω(1)(E(1)) is the number
of configurations relative to system 1 compatible with energy E(1)

and similarly for Ω(2)(E(2)). Since Ω(1)(E(1)) and Ω(2)(E(2)) are the
degeneracies of the two subsystems, Eq. (4.9) follows from the fact
that for each macroscopic state corresponding to an energy E(1) there
are Ω(2)(E(2)) states corresponding to an energy E(2).

What happens if the barrier between 1 and 2 is removed so that
the two systems can exchange energy (for simplicity let us assume
that they cannot exchange particles, i.e. we consider solids. One can
trivially extend the following arguments to the case when also par-
ticles can be exchanged), keeping fixed all the external parameters
(so that no work is done on the two systems)? In this new situation,
all configurations that were allowed before are still allowed, but now
that systems 1 and 2 can exchange energy, the full system 1+ 2 can
also be in microscopic states that correspond to configurations in
which the energy of 1 and 2 could be different from before, provided
the total energy is kept constant. If we call Ω(1+2) the number of
states accessible to the total system after removing the barrier, then

Ω(1+2) ≥ Ω
(1+2)
b . (4.10)

Immediately after removing the barrier the system is not equally
distributed in all of the Ω(1+2) states but will only occupy a fraction

Ω
(1+2)
b /Ω(1+2). If the system is not distributed in all its possible

states, it is not in equilibrium because its distribution is not the one
(3.24) of the microcanonic ensemble. We will see when we studying
non-equilibrium Statistical Mechanics that a system which is not
uniformly distributed in its microscopic accessible states will evolve
towards an equilibrium macroscopic state in which all microscopic
states are equally probable.
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Once the system has reached equilibrium, what is the value of
the average energy of system 1 at equilibrium? What is the energy
probability distribution P (E(1))?

Assuming additivity

E(1+2) = E(1) + E(2), (4.11)

the number of configurations accessible to the combined system 1+2
is

Ω(1+2)(E(1+2)) =
∑
E(1)

Ω(1)(E(1))Ω(2)(E(2)). (4.12)

Here Ω(1)(E(1)) and Ω(2)(E(2)) are the number of configurations ac-
cessible to subsystems 1 and 2 when they have energies E(1) and
E(2).

If system 1 + 2 has reached equilibrium in isolation for the equal
a priori probability postulate, it has the same probability of being in
one of the accessible microscopic states. Therefore the probability
P (1+2)(E(1)) that system 1+2 is in a macroscopic state such that the
subsystem 1 is in a state of energy E(1) and 2 in a state of energy
E(2) is given by the number of configurations Ω(1+2)(E) which realize
this event, divided by the total number of accessible configurations,

P (1+2)(E(1)) =
Ω(1)(E(1))Ω(2)(E(2))

Ω(1+2)
. (4.13)

Since P (1+2)(E(1)) is the product of a rapidly increasing function

[Ω(1)(E(1)) ∼ (E(1) − E
(1)
0 )F

(1)
] and a rapidly decreasing function

[Ω(2)(E(1+2)−E(1)) ∼ (E(1+2)−E(1)−E
(2)
0 )F

(2)
] of E(1), P (E(1)) has

an extremely pronounced maximum around a value E
(1)
.

We will later see that this distribution becomes a Gaussian ex-
tremely peaked around the maximum value E

(1)
if the degrees of

freedom of the two subsystems F (1) and F (2) are both large. There-

fore the E
(1)

coincides with the average energy, which for the pos-
tulate of Statistical Mechanics also coincides with the value of the
measurement.

To find this value E
(1)
, we therefore must find the maximum of

the probability P (1+2)(E(1)) or, more conveniently, of lnP (1+2)(E(1)).
To this end, we consider the equation

∂ lnP (1+2)(E(1))

∂E(1)

∣∣∣∣
E(1)=E

= 0. (4.14)
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Using the fact that ∂E(2)/∂E(1) = −1 (due to Eq. (4.11)), (4.14)
leads to

∂ lnΩ(1)(E(1))

∂E(1)

∣∣∣∣
E(1)=E

=
∂ lnΩ(2)(E(2))

∂E(2)

∣∣∣∣
E(2)=E

(2)
(4.15)

Let us define

β(E) ≡ ∂ lnΩ(E)

∂E
(4.16)

The relation that determines the value E
(1)

for which P (1+2)(E(1))
has a maximum and that expresses the equilibrium condition is

β(1)(E(1)) = β(2)(E(2)). (4.17)

Since Ω is a number and β has the dimensions of an inverse of the
energy. We can introduce a parameter T (which we will see coincide
with the absolute temperature), through the relation

β−1 = kT, (4.18)

where k is the Boltzmann constant. We next show that β has the
properties of an inverse temperature.

• (i) It is an intensive variable.

• (ii) It regulates the thermal fluxes, namely:

j)Two systems separately in equilibrium characterized by the
same value of β will be in equilibrium if put in thermal contact
(namely they can exchange energy without doing work, i.e.,
with all the parameters fixed).

jj)Two systems separately in equilibrium and characterized by
different values of β , will not be in equilibrium if put in ther-
mal contact. In this case heat flows from the one with smaller
β to the one with larger β. This can be understood as fol-
lows: Suppose that, starting from equilibrium β(1) = β(2) we
increase β(1) by a small amount δβ(1) > 0 and decrease β(2) by
δβ(2) < 0 by transferring a small heat δE(1) (positive or nega-
tive we don’t know at the moment) from 2 to 1. Next to Eq.
(4.14) the condition of lnP (1+2) being maximum requires also
∂2 lnP (1+2)(E(1))

∂(E(1))2

∣∣∣
E(1)=E

< 0, that is ∂β(1)

∂E(1)

∣∣∣
E(1)=E

− ∂β(2)

∂E(1)

∣∣∣
E(1)=E

< 0.

Since this relation must hold for any kind of system (different
materials, different sizes of the two sub-systems etc...) this im-
plies that δE(1) is positive, namely heat is transferred from 2
(β(2) smaller) to 1 (β(1) larger).
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4.2.1 Form of P(E(1))

We now show that P (1+2)(E(1)) becomes a Gaussian distribution
when the degrees of freedom F (1) and F (2) are large. We expand
lnP (1+2)(E(1)) around the maximum (as we did in Chapter 3 for the
distribution of particles in a box)

lnP (1+2)(E(1)) = lnP (1+2)(E
(1)
)+

1

2

∂2 lnP (1+2)(E(1))

∂E(1)2

∣∣∣∣
E=E

(1)
(E(1)−E(1)

)2+. . . .

(4.19)
Neglecting higher order terms we have

P (1+2)(E(1)) = P (1+2)(E
(1)
) exp

[
−λ(E(1) − E

(1)
)2
]
, (4.20)

where

λ ≡ −1

2

(
∂2 lnP (1+2)(E(1))

∂E(1)2

)
E(1)=E

(1)
(4.21)

is positive since E is a maximum for P (1+2)(E). For simplicity we

set to zero the ground energies E
(1)
0 = E

(2)
0 = 0, so

Ω(1)(E(1)) ∼
(
E(1)

)F(1)

, Ω(2)(E(2)) ∼
(
E(2)

)F(2)

. (4.22)

Hence from (4.13)

λ ≃ 1

2

(
F (1)

E
(1)2

+
F (2)

E
(2)2

)
. (4.23)

If both systems are macroscopic, we can for simplicity consider the
case F (1) ≈ F (2) ≈ F . Then

E
(1) ∼ E

(2) ≈ E and λ ∼ F−1 (4.24)

and the width of the Gaussian w = 1/
√
λ ∼

√
F , hence

w

E
∼ 1√

F
. (4.25)

Thus the relative fluctuation approaches zero for F very large, and
the nth order derivative of P goes as F/En ∼ F1−n. Therefore,
using the argument of Chapter 2, we can neglect all the terms in the
expansion (4.19) with powers larger than 2.
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4.3 Definition of Entropy in Statistical Mechan-
ics

In the previous section we have already observed that, after removing
the constraint represented by the separation wall between the subsys-
tems 1 and 2 the total number of allowed configurations increases and
therefore lnΩ increases. The increase of lnΩ is completely general
for any isolated system which is let to evolve naturally by removing
a (internal) constraint. This suggests that this quantity might be
related to the entropy.

We now demonstrate that the function S, defined as

S ≡ k lnΩ, (4.26)

coincides with the entropy defined in Thermodynamics.
Let us consider a system characterized by an energy E in equilib-

rium. Let us now imagine to add an infinitesimal amount of energy
δE from the outer world without doing work on the system (for in-
stance by putting it in contact for a short time with a hotter object,
and then isulating it again). Then we wait enough for the system to
equilibrate again. In this process the number of states will change
by an amount

d(lnΩ) =
∂ lnΩ

∂E
δE. (4.27)

Taking into account that the transfer of energy δE = δQ is by defini-
tion the amount of heat exchanged (since all the external parameters
– i.e., particle numbers, volume, etc. – are kept constant), we have
from (4.16)

d(lnΩ) =
δQ

kT
. (4.28)

Since d(lnΩ) is an exact differential (because it is the variation of
the number of microscopic states), it follows that β = 1/kT is the
integral factor that makes δQ an exact differential (it is possible to
show that the integral factor is unique, apart from a multiplicative
constant). Moreover, from the second law of Thermodynamics we
know that

dS =
δQ

T
, (4.29)

where dS is an exact differential and defines the entropy. Therefore
the quantity T that appears in (4.28) coincides with the absolute
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temperature T which appears in (4.29) (we will see that the multi-
plicative constant is equal to unity) and, from (4.28) and (4.29), we
have

dS = kd(lnΩ), (4.30)

This differential relation defines the entropy apart from a multiplica-
tive constant. In order to fix it we postulate that at zero temperature
there is no degeneracy (Ω = 1). Then by integrating (4.30) from a
state at zero temperature to any other macroscopic state, we obtain
the desired result (4.26). In this way by assuming Ω = 1 at zero
temperature we have given a physical interpretation to the third law
of Thermodynamics, which states that S → 0 as T → 0.

4.4 Definition of other quantities (pressure, chem-
ical potential etc...) in Statistical Mechan-
ics.

We have shown that kd(lnΩ) coincides with the differential entropy
dS defined in Thermodynamics when the system exchanges an in-
finitesimal amount of energy with a reservoir, while all the other
parameters are kept fixed. We now show that this identification also
holds when in an infinitesimal transformation the external parame-
ters also change. Let us consider for simplicity that only one external
parameter changes from X to X+dX (X, for example, could be the
volume of the system). We denote by Ω(E,X) the number of states
between E and E + δE. When the parameter X changes from X to
X+dX, the generic state r with energy Er belonging to the interval
between E and E + δE will change from Er to Er + (∂Er/∂X)dX.
As a consequence there will be a number of states that will enter
into the interval (E,E + δE) and some that will go out. This shift
of states will therefore result in a change of Ω(E,X). To evaluate
quantitatively such a change it is convenient to write

Ω(E,X) =
∑
r

g(Er(X)− E), (4.31)

where

g(Er(X)− E) =

{
1 if 0 ≤ Er(X)− E ≤ δE
0 otherwise,

(4.32)
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Taking the derivative of (4.31) with respect to X we obtain:

∂Ω(E,X)

∂X
= −

∑
r

∂g(zr)

∂E

∂Er

∂X
. (4.33)

Here we have used the relations

∂g

∂zr
= − ∂g

∂E
,

∂zr
∂X

=
∂Er

∂X
. (4.34)

with zr = Er(X)− E. From (4.33), it follows that

∂Ω(E,X)

∂X
=

∂

∂E
[Ω(E,X)f ] =

(
f
∂Ω(E,X)

∂E
+ Ω(E,X)

∂f

∂E

)
,

(4.35)
where f is the average value of −∂E/∂X

f ≡ −⟨∂E/∂X⟩ ≡ −1

Ω(E,X)

∑
r

g(Er(X)− E)
∂Er

∂X
. (4.36)

[Indeed using Leibenitz rule ( ∂f
∂E

= − 1
Ω

∂Ω
∂E
f+ second term), the first

term on the r.h.s. of the equation above, plugged into the second
term on r.h.s. of Eq. (4.35) cancels the first term, and what referred
above as second term gives the result.]

Hence, from Eq. (4.36), −fdX is the internal variation of the
energy, due to the change fromX toX+dX of the control parameter
X and therefore

fdX = δW, (4.37)

is the work δW done by the system on the external world. For this
reason f is the generalized force introduced in Sec. 1.2.2.

From (4.35), dividing by Ω(E,X),

∂ lnΩ

∂X
= f

∂ lnΩ

∂E
+
∂f

∂E
, (4.38)

For large values of the degree of freedom F , evaluating the order of
magnitude of the two terms on the right side of (4.38) gives

f
∂ lnΩ

∂E
∼ f

F
E
, (4.39)

where we have used (4.8); moreover,

∂f

∂E
∼ f

E
. (4.40)



CHAPTER 4. THE CONNECTION WITH THERMODYNAMICS 57

In conclusion, in the limit of extremely large F ,

∂ lnΩ

∂X
= βf. (4.41)

In the particular case in which X is the volume V , then

fdV = δW, (4.42)

therefore f ≡ P is the pressure.
If X is the number of particles N , then

fdN = δW, (4.43)

and
f = −µ (4.44)

is the chemical potential. If there are Xα(α = 1 . . . k) different pa-
rameters, (4.41) can be generalized

∂ lnΩ(E,Xα)

∂Xα

= βfα. (4.45)

In conclusion, from lnΩ we can calculate both the temperature

∂ lnΩ(E,X)

∂E
= β, (4.46)

and the generalized force

∂ lnΩ(E,X)

∂X
= βf. (4.47)

If X is the volume, we can find the equilibrium condition for two
systems that can exchange heat and volume. Using the same argu-
ments as before (4.40), the equilibrium conditions are obtained by
maximizing the probability. Namely, by imposing that both deriva-
tives of the probability with respect to E and X must be zero, we
obtain

β(1) = β(2) and f
(1)

= f
(1)
, (4.48)

where f
(1)

and f
(2)

are the pressures of the two systems.
If the system can also exchange particles, then X(1) and xX(2)

denote the numbers of particles, while f
(1)

and f
(2)

denote the corre-
sponding chemical potentials. In general, the equilibrium conditions
for two systems which can exchange heat and any parameter Xα is
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given by β(1) = β(2) and f
(1)

α = f
(2)

α . These conditions will be studied
in more detail for the particular case in which X = N is the number
of particles (see Chapter 8).

Finally we consider a transformation from one equilibrium state
characterized by (E,X) to another equilibrium state characterized
by (E + δE,X + δX). We have

d lnΩ(E, x) =
∂ lnΩ

∂E
dE +

∂ lnΩ

∂X
dX = βdE + βfdX, (4.49)

from which

dE = β−1d(lnΩ)− fdX = kBTd(lnΩ)− fdx, (4.50)

where dE is the variation of total energy and fdX the mechanical
work done. Thus β−1d(lnΩ) is by definition the heat exchanged δQ,
and

kd(lnΩ) =
δQ

T
. (4.51)

In conclusion, we find that dS = kd(lnΩ) for a general transforma-
tion.

We are now in a position to better understand the physical mean-
ing of the second law of Thermodynamics. The increase of the en-
tropy in any process that evolves spontaneously corresponds to the
fact that the system evolves toward macroscopic states which are
most probable. How do we explain the dichotomy between micro-
scopic reversibility and macroscopic irreversibility? The laws of clas-
sical mechanics are invariant under time reversal. This means that if
we start from a microscopic state and let it evolve in time, the laws
of mechanics tell us that, if we reverse the velocities of all particles,
the system will go back into the initial configuration following the
same phase space trajectory in the opposite direction. For example,
two liquids initially at different temperatures when put in thermal
contact will reach an homogeneous state at some intermediate tem-
perature. If we reverse the velocities of all the particles, the system
will evolve towards the initial state in which one subsystem is at a
temperature different from the other. Why do we never observe that
a liquid separates into a warmer region and a colder region? In prin-
ciple, this process is allowed by the laws of mechanics but, in order
for it to occur, the system must be in a very special configuration,
one that has the property of evolving towards a state characterized
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by two regions at different temperatures. The number of such config-
urations is extremely small compared to the total number of allowed
configurations. Therefore the probability that one of these partic-
ular configurations occurs is infinitesimally small for a macroscopic
system.

4.5 Continuous variables

The definition of entropy given previously is based on the number
of configurations accessible to the system for a fixed value of the
energy E, the number of particles N , and the volume V . Although
this definition makes perfect sense for a quantum mechanical system
in which the states are discrete, for a classical system described in
terms of continuous variables this definition needs to be modified
since the states are not discrete and the number of states accessible
is always infinite. This problem can be circumvented by dividing the
phase space in cells of volume

ωN
0 = (δqδp)3N (4.52)

The cell can be chosen small enough that, loosely speaking, all points
in the cell are representative of microstates which do not differ much
from each other. If ∆Γ is the volume of phase space accessible to
the system, the number of accessible cells is given by Ω = ∆Γ/ωN

0

and the entropy for classical systems can be defined as

S = k ln
∆Γ

ωN
0

. (4.53)

With this definition, all the properties obtained in the case of discrete
states are valid also here. The only question now is the choice of ω0.
This choice will affect the entropy only by a constant. Later, in
chapter 6 we will discuss in detail how to choose ω0 (we anticipate
ω0 = h3 where h is the Planck constant) using a technique that
compares the entropy of a classical ideal gas with that of a quantum
ideal gas.



Chapter 5

Systems with finite
energetic levels

5.1 Two level systems

Let us consider a system of N identical non-interacting constituents
(we can think to particles here, but they can be different entities like
for instance magnetic moments – see Sec. 5.2), for each of which two
energetic states, denoted as 0 and 1, are only possible. Without loss
of generality we can fix the energy of the two levels to be e0 = 0 and
e1 = ϵ. Then the Hamiltonian is

H = ϵ
N∑
i=1

ni = ϵM (5.1)

where i is an index which labels particles, ni = 0, 1 is the single
particle occupation number of the excited state (ni = 0 if the i-th
particle occupy the lowest energy level and ni = 1 if it is in the
high energy state). In the microcanonical ensemble the system is
supposed to be isolated, the energy does not fluctuate and is given
by Eq. (5.1).

The number Ω of microstates equals

Ω(E,N) =
N !

(N −M)!M !
(5.2)

namely the number of ways to accomodateN particles into two boxes
(permutations of N objects allowing repetitions). Notice that Eq.
(5.2) implies that we have assumed the identical particles indistin-
guishable, namely we do not count as different two states which only
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differ by the exchange of the particles inside the two levels. We will
return on this important point in Sec. 6.3.

Using Stirling’s approximation, for the entropy one finds

S(E,N) = k lnΩ ≃ k[N lnN−M lnM−(N−M) ln(N−M)] (5.3)

Notice that the entropy is extensive, as it should (indeed S/N is a
function of the intensive variable N/M only). It is easy to check
that this would not have been the case if the identical particles were
considered distinguishable.

We are now in the position to compute, using the relations of
Chapter 4, the temperature of the system

β =
∂S

∂E
=

∂S

∂M

∂M

∂E
=
k

ϵ
ln
(
m−1 − 1

)
, (5.4)

where m = ⟨ni⟩ = M/N is the average occupation number of the
excited level (which does not depend on i since the particles are
identical). Inverting this relation one finds

m =
1

1 + eβϵ
(5.5)

This shows that in the limit of low temperatures T → 0 all the par-
ticles tend to occupy the lower energy level, while in the opposite
situation T → ∞ the two energy levels are randomly occupied. This
shows that the high temperature limit corresponds to the most dis-
ordered state (the two states have equal occupancy probability), not
to the most energetic one, as one could naively believe.

5.1.1 Negative temperatures

The behavior of S and β as a function of m are shown in Fig. 5.1.
The first observation is that the entropy has a maximum at m =

1/2. This implies that the temperature becomes negative when the
occupation number is larger than 1/2. This particular behavior is
typical of systems exhibiting a bounded set of energy levels. Usually
for a system like a gas or liquid, the energy levels are unbounded,
and S is a monotonic function of the energy. In this case, when
T becomes sufficiently large, the system tends to be in states with
high energy in order to make the entropy large. A peculiarity of
the system with limited level energy, is that the entropy cannot
increase indefinitely upon increasing the energy, since there is only
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Figure 5.1: Entropy and inverse temperature of a two-level system.

one microstate corresponding to the maximum energy. Hence S must
have a maximum for a certain value of the energy (in this case for
E = ϵN/2), and above that value it decreases with E, producing a
negative temperature.

A system with negative temperature in contact with a normal sys-
tem with positive temperature will transfer energy until it reaches
an equilibrium temperature. Since the normal system has always a
positive temperature whatever the energy is, the final equilibrium
temperature will always be positive. Negative temperature corre-
sponds therefore to superhot systems, that only special systems can
achieve.

Negative temperatures can be produced in the laboratory for in-
stance when dealing with magnetic systems, how we will see in the
next section.

5.2 Paramagnetism

The experiment of Stern and Gerlach showed that electrons have an
intrinsic angular momentum called spin, which can be interpreted
as due to the rotation of the electron around itself, and a magnetic
dipole associated with the spin. In general, an atom has spin.

A material that has the property of possessing a magnetic moment
proportional to an applied external fieldH is called a paramagnet. A
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simple model for a paramagnet is made of N magnetic atoms in fixed
positions. Let us assume that each atom has a magnetic moment µ⃗i.

If the system is in an external field H and the magnetic moments
of one atom do not interact with those of other atoms, then the
Hamiltonian can be written as

H = −
N∑
i=1

µ⃗i · H⃗ = −H
N∑
i=1

µ
(z)
i , (5.6)

where we have chosen the axis z along the direction of the field H,

and µ
(z)
i is the projection of µ⃗i along the z direction.

According to quantum mechanics, for spin 1/2 particles the com-
ponent of the magnetic moment along the field can assume only the

two values µ
(z)
i = ±µ0 where we have put µ0 =

1
2
µB

1.
For convenience, let us introduce a spin variable that can assume

two values Si = ±1. The Hamiltonian (5.6) can then be written as

H = −µ0H
N∑
i=1

Si. (5.7)

where S = ±1 corresponds respectively to the spin up or down.
Transforming the spin variables Si = ±1 to ni = 0, 1 by means of

ni = 1− 2Si (5.8)

the Hamiltonian reads

H = 2µ0H

N∑
i=1

ni − 2Nµ0H. (5.9)

With the position ϵ = 2µ0H = ϵ the Hamiltonian is identical (apart
from an irrelevant additive constant −2Nµ0H) to that of Eq. (5.1).
All the statistical mechanical tratment of Sec. 5 can therefore be
repeated.

An experimental way to prepare a system with negative temper-
ature is to apply a field to a crystal whose atoms possess a magnetic
moment. By reversing the field, the system will be in an energy state

1In general, spin is a vector S⃗ whose magnitude is given by
√

S(S + 1)h̄. The component
of the spin along the z direction is given by Sz = h̄ms. The magnetic moment associated
with the spin is proportional to S⃗ with a proportionality constant g, µ⃗ = −gS⃗; µz = µBms,
where µB denotes the Bohr magneton and ms is a discrete quantum number which assumes
the value −S,−S+1, . . . , S. The value of S can be integer (bosons) or half integer (fermions).
For S = 1/2, ms = ±1/2.
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very large, corresponding to negative temperature. However, even if
the system is isolated from the environment, the spins variable can
release energy to the cristal lattice and hence they cannot be truely
considered as isolated. Therefore, usually after a relaxation time,
the spins will release energy to the lattice until a uniform tempera-
ture is reached. For this reason, a state with negative temperature
does not live long and hence are rarely seen outside the laboratory.



Chapter 6

Ideal gases

6.1 Classical Ideal Gas

We calculate now the entropy for a classical ideal gas made of N
monatomic particles of mass m in a volume V . The Hamiltonian
can be written as

H(p, q) =
3N∑
i=1

p2i
2m

. (6.1)

If we consider molecules belonging to an energy shell of size δE, than
the accessible volume ∆Γ of phase space is

∆Γ =

∫
dq1dq2 . . . dq3N

∫
E≤H(p,q)≤E+δE

dp1dp2 . . . dp3N . (6.2)

The integral over the variable q is over the volume occupied by the
particles and gives a factor V N . The integral over the variable p
can be computed by calculating first the accessible volume in phase
space for all the states 0 ≤ H(p, q) ≤ E

Γ = VN

∫
0≤H(p,q)≤E

dp1 . . . dp3N , (6.3)

and then differentiate to get

∆Γ =
dΓ

dE
δE. (6.4)

Given the form of the Hamiltonian (6.1), the integral over the
momentum in (6.2) is given by the hypervolume in momentum space
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such that
3N∑
i=1

p2i
2m

≤ E. (6.5)

For a fixed value of E, Eq. (6.5) describes a hypersphere of radius
R(E) in a 3N coordinate space, with

R(E) = (2mE)1/2. (6.6)

The volume of such a hypersphere is proportional to R3N . Therefore∫
dq1dq2 . . . dq3N

∫
E≤H(p,q)≤E+δE

dp1dp2 . . . dp3N = BNR
3N , (6.7)

where BN is the unit sphere volume, which depends only on N and
not on R

BN =
π3N/2

Γ(3N/2 + 1)
. (6.8)

In the following, for simplicity, we will assume that 3N/2 is an inte-
ger. Then the Γ function reduces to the usual factorial and

BN =
π3N/2

(3N/2)!
. (6.9)

Thus
Γ

ωN
0

=

(
V

ω0

)N

BN(2mE)
3N/2. (6.10)

Differentiating with respect to E, we find

∆Γ

ωN
0

=
3

2

(
V

ω0

)N

BN(2mE)
3N/2NδE

E
=

3

2

Γ

ωN
0

NδE

E
. (6.11)

Taking the logarithm of (6.11), and using Stirling’s approximation
for BN (6.9), we find for Ω = ∆Γ/ωN

0

lnΩ = N ln

[
V

ω0

(
4πmE

3N

)3/2
]
+

3

2
N, (6.12)

where we neglect terms of order of lnN such as ln(NδE/E). In fact,
E is of the order of N while δE is, at most, of the order of the energy
E, and therefore, at most, of the order of N .

Note that if N is very large – of the order of 1024 for macroscopic
systems – then lnN/N ∼ 10−22 and terms of lnN are completely
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negligible compared to N . For this reason, from Eqs. (6.10) and
(6.11), ln∆Γ and ln Γ are practically identical. Namely, the volume
of a hypersphere coincides with the volume of the infinitesimal shell
when the number of space dimensions approaches infinity.

The entropy can be readily obtained from Eq. (6.12) by the re-
lation S = k lnΩ. Notice that this quantity is not extensive (there
is an extra V in the ln). This implies that our theory is yet incom-
plete (we anticipate that the question is how to distinguish among
identical particles). We will discuss how this problem can be solved
in the next section 6.3 by considering an appropriate correction to
the theory. For the moment let us find the relations between E, T, P
and V which, how it will be clear in Sec. 6.3, are not spoiled by that
correction.

Using the equations relating the absolute temperature and the
pressure derived in Chapter 4,

β =
∂ lnΩ

∂E
(6.13)

and

βP =
∂ lnΩ

∂V
, (6.14)

we obtain from Eq. (6.12)

E =
3

2
NkT (6.15)

and
PV = NkT. (6.16)

Relation (6.16) shows that the temperature T = 1/kβ defined through
(6.13) coincides with the absolute temperature of the ideal gas. Eq.
(6.15) is a manifestation of the so called equipartition theorem, stat-
ing that each independent quadratic variable in the Hamiltonian
provides an average energy (1/2)kT . We will prove this theorem in
Sec. 7.7.

6.2 Quantum Ideal Gas

Now we consider the energy spectrum for a system of particles that
obey quantum mechanics. We treat the system quasi-classically in
the sense that we consider only the quantization of the energy. The
full quantum treatment will be presented later.
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The energy spectrum of a particle in a 3-dimensional box of vol-
ume V ≡ L3 is

ϵ =
h̄2π2

2m

1

L2
(n2

1 + n2
2 + n2

3), (6.17)

where n1, n2, n3 = 0, 1, 2, . . . . For a system of N particles,

ϵ =
h̄2π2

2m

1

V 2/3

3N∑
i=1

n2
i . (6.18)

As in the classical case, we calculate the number of states corre-
sponding to an energy between 0 and E. The states correspond to
the set of integers {ni} for which

0 ≤
3N∑
i=1

n2
i ≤

2m

h̄2
V 2/3

π2
E = R2, (6.19)

namely, all the points with integer coordinates inside a hypersphere
of radius R. The number of points coincides with the volume of such
a region if we consider the ni’s as continuous coordinates. The dis-
crepany is anyway negligible in the limit of very largeN . To calculate
the volume of such region one needs to calculate the the volume of the
hypersphere of radius R in 3N dimensions, devided by 23N (this is
because the single particle quantum numbers n1, n2, n3 in Eq. (6.17)
can only be positive. This is exactly the same problem as in the
classical case with the replacement Rclassic → Rquant = V 1/3/(2πh̄)
(but in the classical case there was an extra volume coming from the
integration over the positions).

In conclusion repeating the calculation along the same lines as
done in the classical case, we obtain for the number of configurations
Ω with energy between E and E+δE the same result of the classical
case but with the value of the elementary cell given explicitly as
ω0 = h3. It follows that

lnΩ = N ln

[
V

h3

(
4πmE

3N

)3/2
]
+

3

2
N. (6.20)

The receipt to fix ω0, that we have derived in a specific example,
is completely general. Let us observe that we have to resort to the
quantum properties of the system to fix ω0. Indeed, its physical
origin is related to Heisenberg’s uncertainty principle: we cannot
resolve states within a precision of order ∆q∆p ≃ h̄/2.
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6.3 Identical particles

From the expressions (6.12) and (6.20) of S/k = lnΩ, we note that
the entropy does not have the property of being an extensive quan-
tity, namely, if we double volume V , energy E, and number of
particles N , the entropy should also double. To generalize, if we
make the transformations

V → λV E → λE N → λN. (6.21)

the entropy should transform: S → λS. The lack of this property
is due to the presence of the volume alone in the log term (6.12),
unlike the energy which appears divided by N .

6.3.1 Gibbs paradox

Another (related) unsatisfying feature of the theory comes about, as
pointed out originally by Gibbs, when one considers a system of two
gases in a, adiabatic container as the one in Fig. 1.1 (right panel).
Here the two subsystem have volumes V1 and V2 and are filled with
N1 and N2 molecules of the two perfect gases, respectively. The two
subsystems are initially separated by an internal wall, i.e. the two
gas are unmixed, and at some instant of time the wall is removed
and the two gases mix. According to Eq. (6.12) before removing the
wall the entropy is given by

Sunmix = k

(
N1 ln a1V1 +N2 ln a2V2 +

3

2
N

)
, (6.22)

where N = N1 + N2 and a1 = 1
ω0

(
4πmE1

3N1

)3/2
and similarly for a2.

After removing the wall, the system attains a new equilibrium state
with entropy

Smix = k

(
N1 ln a1V +N2 ln a2V +

3

2
N

)
, (6.23)

where V = V1 + V2. The mixing entropy is therefore

∆S = k

(
N1 ln

V

V1
+N2 ln

V

V2

)
> 0 (6.24)

If the two gases are different this result is perfectly natural and
states that the entropy of mixing is the thermodynamic force which
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drives the mixing process (the two gases mix because in doing so the
entropy increases). However, if 1 and 2 contained initially the same
gas this result is a disaster. Indeed this would imply that the entropy
of a system (without the wall) containing a certain gas depends on
whether it was initially prepared into two separate boxes or not. In
other words a thermodynamic quantity (S) would depend on the
history of the system, and hence it would not be a state variable.

6.3.2 Solution of the paradox

This paradox was resolved by Gibbs who introduced an ad hoc hy-
pothesis – which, although intuitive, does not find justification with
classical mechanics. The idea is that two states which are obtained
by exchanging the coordinates of two particles should not be con-
sidered as two distinct states, since the particles should be indistin-
guishable. Assuming that each state of single particle is occupied by
no more than one particle, the number of configurations calculated
before has overestimated the number of states by a factor of N ! –
the number of permutations of N particles.

The correct number of states Ωcorr is then given by

Ωcorr =
Ω

N !
. (6.25)

This is usually denoted as the correct Boltzmann counting. By using
the expression for Ω (6.12) and applying Stirling’s approximation,
one finds

S = k lnΩcorr = N ln

[
V

h3N

(
4πmE

3N

)3/2
]
+

5

2
kN, (6.26)

which now has the correct additive property, since the volume V now
is divided by N . This is the so called Sackur-Tetrode expression of
the ideal gas entropy. Note that this extra factor N does not affect
the calculation for the equation of state and the temperature since
these calculations arise from derivatives of the entropy with respect
to E and V by Eqs. (6.13) and (6.14). The correct Boltzmann
counting tame also the mixing paradox. Indeed, keeping it into
account one has, instead of Eq. (6.23)

Sunmix = k

[
N1 ln(a1v1) +N2 ln(a2v2) +

5

2
N

]
, (6.27)
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where v1 = V1/N1 is the specific volume (and similarly for v2). Notice
that, if the two gases are identical, in the sense that they have the
same energy and volume per particle, then

a1 = a2 = a =
1

ω0

(
4πmE

3N

)3/2

(6.28)

(see definition (6.27) of a1, a2) and

v1 = v2 = v = V/N, (6.29)

and Eq. (6.27) can be written as

S
(eq)
unmix = k

[
N ln(av) +

5

2
N

]
, (6.30)

After the mixing, instead of Eq. (6.27) one finds

S
(diff)
mix = k

[
N1 ln

(
a1
V

N1

)
+N2 ln

(
a2
V

N2

)
+

5

2
N

]
, (6.31)

if the two gases are different, and

S
(eq)
mix = k

[
N1 ln

(
a1
V

N

)
+N2 ln

(
a2
V

N

)
+

5

2
N

]
= k

[
N ln(av) +

5

2
N

]
,

(6.32)
with a = a1 = a2 (because, being equal, the two gases after mixing
must have the same energy per particle, see definition (6.27) of a1 )
and v = V/N ,

if they are equal. Hence one finds

∆S(diff) = k

[
N1 ln

V

V1
+N2 ln

V

V2

]
> 0 (6.33)

when the two gases are different and

∆S(eq) = 0 (6.34)

if they are equal. The paradox is then resolved.
In conclusion, to treat a classical system one must introduce two

ad hoc requirements: (i) the elementary cell ω0 in phase space must
be chosen ω0 = h3; (ii) the particles must be considered indis-
tinguishable. These two requirements have no proper justification
within classical mechanics. We will show later that a proper quan-
tum mechanical treatment of a system of N particles in the classical
limit of high temperature and low density reproduce the classical
result, corrected by these two ad hoc requirements.



Chapter 7

Canonical Ensemble

7.1 The Ensemble Distribution

In Chapter 3, we considered an isolated system and we postulated
that, at equilibrium, such a system is described by an ensemble that
is uniformly distributed over all microstates (microcanonical ensem-
ble), i.e., we postulated that the system at equilibrium can be found
in each of its many allowed configurations with equal probability.
Most often we deal with systems that are in contact with a heat
reservoir at constant temperature. What is the probability that we
will find such a system in one of its allowed configurations?

To be more specific, consider a system A in thermal contact with a
systemA′, where A′ is much larger than A, and assume the systems A
and A′ have reached equilibrium. We consider the case in which the
interaction between systems A and A′ is so small that we can consider
the states of system A independent of system A′. We also consider
here the case of discrete states. The extension to the classical case
appears in the next section of this chapter. We address the question:
If r is a particular microstate of A corresponding to an energy Er ,
what is the probability Pr of finding A in such a microstate?

Although A can exchange energy with A′ , system A + A′ is iso-
lated. Since the system is in equilibrium, we can apply to such an
isolated system the postulate of equal a priori probability. There-
fore Pr is proportional to the number of configurations relative to
system A + A′ , in which subsystem A is in the configuration r
and subsystem A′ is in any of its configurations r′ compatible with
configuration r. Since system A + A′ is isolated, the total energy is
fixed, so the sum of the energy of A and A′ must always equal the

72
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total energy Etot . Hence the configurations r
′ of A′ compatible with

r are those corresponding to an energy E ′ such that E ′ +Er = Etot.
Since A and A′ are weakly interacting and by definition there is

only one microstate r, the number of states ΩA+A′(r, {r′}) such that
A is in state r and A′ in any of the possible states r′ is

ΩA+A′(r, {r′}) = 1 · ΩA′(E ′), (7.1)

where ΩA′({r′}) is the number of r′ states. Pr is the ratio between
the number of states ΩA+A′(r, {r′}) compatible with r and the to-
tal number of possible states Ωtot

A+A′ of the composite system A+A′.
Using Eq. (7.1) one has

Pr =
ΩA′(E ′)

Ωtot
A+A′

. (7.2)

Since we are considering the case where A and A′ can only exchange
energy (the number of particles and the volume of A and A′ are kept
fixed), states r can only differ by their energy. Hence we can write

Pr =
ΩA′(E ′)

Ωtot
A+A′

=
ΩA′(Etot − Er)

Ωtot
A+A′

. (7.3)

If we take the logarithm of Pr in (7.3) and expand around Er = 0,
we find

lnPr = C −
(
∂ lnΩA′(E ′)

∂E ′

)
E′=Etot

Er + . . . , (7.4)

where C is a constant that does not depend on r. Since Er is
very small compared to Etot, higher order terms can be neglected(
In fact: ΩA′(E ′) ∼ E ′f ⇒ ∂k lnΩA′ (E′)

∂E′k

∣∣∣
E′=Etot

∼ f
Ek

tot

)
. From (7.4)

Pr =
1

Z
e−βEr , (7.5)

where

β =

(
∂ lnΩA′(E ′)

∂E ′

)
E′=Etot

, (7.6)

is the inverse temperature of system A′ when its energy is E ′ = Etot.
Since system A′ is much larger than system A, the energy of A′ –
when in equilibrium with A – practically coincides with energy Etot.
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The normalization factor Z is obtained by imposing
∑

r Pr = 1,
so from (7.5)

Z =
∑
r

e−βEr (7.7)

The exponential factor e−βEr is called the Boltzmann factor and Z
is called the partition function. An ensemble of equivalent systems
all in contact with a reservoir at a given temperature T that is dis-
tributed over all microstates according to distribution (7.5) is called
a canonical ensemble.

7.2 The partition function

We now analyze the properties of the partition function. The average
value of the energy ⟨E⟩ is given by

⟨E⟩ ≡
∑
r

ErPr =
∑
r

Ere
−βEr

Z
. (7.8)

Therefore, from (7.7),

−∂ lnZ
∂β

= − 1

Z

∂Z

∂β
= ⟨E⟩. (7.9)

Similarly, the mean square fluctuation is defined as

⟨∆E2⟩ ≡ ⟨E2⟩ − ⟨E⟩2 =
∑
r

E2
re

−βEr

Z
−

(∑
r

Ere
−βEr

Z

)2

. (7.10)

Therefore,
∂2 lnZ

δβ
= −∂⟨E⟩

∂β
= ⟨E2⟩ − ⟨E⟩2. (7.11)

Moreover, from β = (kT )−1

∂⟨E⟩
δβ

= −kT 2∂⟨E⟩
δT

(7.12)

Since the variation of the energy is done at fixed external parameters,
it is due only to the exchange of heat and not to any mechanical
work. Therefore, from Eq. (1.5) of Chapter 1, CV , the specific heat
at constant volume, is

CV ≡ ∂⟨E⟩
∂T

. (7.13)
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From (7.9)(7.13) we have

kT 2CV = ⟨E2⟩ − ⟨E⟩2. (7.14)

Equation (7.14) is one of many relations classified as fluctuation-
dissipation relations. It connects the spontaneous fluctuations of
the energy in equilibrium to the variations of the energy induced by
an infinitesimal change of the temperature. The CV term denotes
the response (change of energy) of the system to the change of the
external temperature. Relation (7.14) implies that if a system ex-
hibits large fluctuations in energy, i.e., the system can spontaneously
change its energy value around the average value, then the average
value of the energy is very sensitive to external changes in tempera-
ture.

From the partition function Z it is also possible to obtain the
generalized forces (see Chapter 4) defined as

f ≡ −
∑
r

∂Er

∂X
Pr, (7.15)

where X is an external parameter such that the work done by the
system due to a change δX is given by

δW = fδX. (7.16)

On the other hand, one has

∂ lnZ

∂X
=

1

Z

∂

∂X

∑
r

e−βEr = −β
∑
r

∂Er

∂X
Pr. (7.17)

Comparing with Eq. (7.15) we see that

f =
1

β

∂ lnZ

∂X
. (7.18)

In the particular case in which X is the volume V , f is the pressure
p, (7.18) becomes

p =
1

β

∂ lnZ

∂V
. (7.19)

7.3 Energy Distribution

The distribution probability (7.5) gives the probability that a sys-
tem in contact with a reservoir at temperature T is in a particular
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configuration r characterized by an energy Er. What is the proba-
bility that such a system will be in a configuration characterized by
an energy between E and E + δE? P (E) is given by the sum over
the probabilities of each event that has an energy between E and
E + δE,

P (E) =
∑

E≤Er≤E+δE

Pr =
Ω(E)e−βE

Z
, (7.20)

where Ω(E) is the number of configurations with energies between
E and E + δE.

We can write (7.20) as

P (E) =
e−F (E)/kT

Z
, (7.21)

where
F (E) = E − TS(E), (7.22)

and
S(E) = k lnΩ(E). (7.23)

We can follow the same procedure we used in Chapter 4 and ex-
pand lnP (E) around its maximum value E. This is equivalent to
expanding F (E) around its minimum,

F (E) = F (E) +
1

2

∂2F

∂E2

∣∣∣∣
E=E

(E − E)2 + . . . , (7.24)

where E is the value that minimizes F (E), i.e.,

∂F (E)

∂E

∣∣∣∣
E=E

= 0. (7.25)

Hence, from (7.22),
∂S(E)

∂E

∣∣∣∣
E=E

=
1

T
, (7.26)

where T is the temperature of the reservoir. As discussed in Chapter
4, the value E that maximizes the probability corresponds to the
value of the energy at equilibrium. Equation (7.26) states that at
equilibrium the entropy of system A satisfies the thermodynamical
relation. Using (7.23), we can express the second derivative of F (E)
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in (7.22). Since T is the temperature of the reservoir and does not
depend on E, we have(

∂2F (E)

∂E2

)
E=E

= −T
(
∂2S(E)

∂E2

)
E=E

, (7.27)

and(
∂2S(E)

∂E2

)
E=E

=

(
∂

∂E

1

T (E)

)
E=E

= − 1

T 2(E)

(
∂T (E)

∂E

)
E=E

,

(7.28)
where T (E) is the temperature of system A when it is in equilibrium
with the reservoir at temperature T . Therefore

T (E) = T ;

(
∂T (E)

∂E

)
E=E

=
1

CV

, (7.29)

where CV is the specific heat at constant volume. Therefore from
(7.28) and (7.29), (7.27) gives(

∂2F

∂E2

)
E=E

=
1

TCV

. (7.30)

Finally, using the argument of Chapter 4, for very large N (the
thermodynamic limit of system A) we can neglect higher order terms
in (7.24), and, from (7.21) and (7.30),

P (E) = A exp[−(E − E)2/(2kT 2CV )], (7.31)

where the factor A = e−F (E)/kT/Z does not depend on E. We find
that the distribution P (E) is a Gaussian centered around the average
value E = ⟨E⟩ with variance ⟨E2⟩ − ⟨E⟩2 = kT 2CV in agreement
with Eq. (7.14). We note that the equilibrium is reached for E = E
where P (E) is maximum. This value in turn corresponds to the
value which minimizes F (E),

F (E) = E − TS(E), (7.32)

namely, for a system in thermal contact with a reservoir at constant
temperature T , the equilibrium is reached for that value of the
energy that minimizes the free energy function defined in Thermo-
dynamics, Eq. (7.32).

The free energy contains two terms: energy and entropy. In the
high-temperature limit, the energy term can be neglected, and the
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minimum of free energy corresponds to maximizing the entropy. In
the opposite limit of small temperatures, the entropy term can be
neglected and the minimum of the free energy coincides with the min-
imum of the energy. For intermediate temperatures, for the system
to reach equilibrium, it must reach a compromise between entropy
and energy.

The width of the Gaussian (7.31) (i.e., the root mean square en-
ergy fluctuation) divided by the average value gives, since E = ⟨E⟩√

⟨E2⟩ − ⟨E⟩2
⟨E⟩

∼
√
CV

⟨E⟩
∼ 1√

N
, (7.33)

where we have taken into account that CV and E are proportional to
the number of particles N . From (7.33), it follows that the relative
fluctuation goes to zero in the thermodynamic limit. As explained in
Chapter 2, this implies that the distribution of the energy per par-
ticle e ≡ E/N in the thermodynamic limit tends to a delta function
peaked around its mean value ⟨e⟩. Hence, for a system at equilib-
rium with a reservoir at temperature T , in the thermodynamic limit
there is only one macroscopic state that is realized corresponding to
equilibrium. All other macroscopic states corresponding to other
values of the energy have zero probability of being realized in the
N → ∞ limit.

Thus we have found that in the thermodynamic limit the canon-
ical ensemble coincides with the microcanonical ensemble. In fact,
in the thermodynamic limit only one energy density is allowed, so
the system behaves as if the energy were fixed – as it is in the mi-
crocanonical ensemble. In fact, for a fixed value of the energy, the
probability distribution is constant in the canonical ensemble. Hence
all calculations performed in the canonical and microcanonical en-
sembles in the thermodynamic limit will give the same result. This
equivalence will be exemplified later when we return to the case of
the ideal gas. Although the microcanonical ensemble is equivalent
to the canonical ensemble in the thermodynamic limit, fluctuations
around the average energy may be important for a finite system.
The choice of the ensemble will depend on whether the system is
isolated or in contact with a reservoir.
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7.4 Free Energy

From the partition function Z, we have calculated the average energy
⟨E⟩ with its fluctuation ⟨E2⟩−⟨E⟩2, and the generalized force f . We
now show that in the thermodynamic limit the free energy defined
thermodynamically coincides with the quantity

F = −kT lnZ, (7.34)

where Z is the partition function (7.7). First we note that

Z =
∑
r

e−βEr =
∑
E

Ω(E)e−βE =
∑
E

g(E)e−βEδE, (7.35)

where g(E)δE = Ω(E) is the number of states between E and E+dE
and the sum is over all the energy intervals δE. In the thermody-
namic limit

ln g(E) = lnΩ(E), (7.36)

since ln(∆E) is at most of the order of lnN , and is negligible com-
pared with lnΩ ∼ N . Since in (7.35) the energy interval δE is small
compared to E, we can substitute an integral for the sum

Z =

∫
e−βF (E)dE. (7.37)

where F (E) = E−TS(E). Using the Gaussian approximation (7.31)
for P (E), we find

Z = e−βF (E)

∫ ∞

0

e−(E−E)2/(2kT 2CV )dE. (7.38)

The Gaussian integral is evaluated in Appendix, so∫ ∞

−∞
e−αx2

dx =

√
π

α
, (7.39)

it follows from (7.38) that

−kT lnZ = F (E)− kT ln
√
2πkT 2CV . (7.40)

In the limit of infinite N , the last term in (7.40) can be neglected
since CV is of the order of N , so

−kT lnZ = E − TS. (7.41)
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Another way to obtain the same result is by differentiating lnZ

d(lnZ) =
∂ lnZ

∂x
dx+

∂ lnZ

∂β
dβ, (7.42)

where x is an external parameter (such as V ). From (7.38) and
(7.40)

d(lnZ) = βfdx−Edβ = βδW−d(βE)+βdE = β(δW+dE)−d(βE),
(7.43)

where δW is the work done by the system from Eq. (7.16), and dE
the variation of the internal energy. Therefore δW+δE = δQ, where
δQ is the heat absorbed by the system.

In conclusion, from (7.43)

d(lnZ + βE) = βδQ = dS, (7.44)

and on integrating, we find

−kT lnZ = E − TS. (7.45)

Comparing (7.45) with (7.32) shows that F = −kT lnZ is the free
energy.

From (7.45) we can derive a useful expression for the entropy in
the canonical ensemble. Substituting (7.8) into (7.45), we find

S =
∑
s

Ps

(
Es

T
+ k lnZ

)
, (7.46)

where we have used
∑

s Ps = 1. From (7.5) follows

Es

T
= −k lnPs − k lnZ. (7.47)

Hence substituting (7.47) into (7.46), the expression for the entropy
in the canonical ensemble can be written in the form

S = −k
∑
s

Ps lnPs = −k⟨lnPs⟩. (7.48)

The form of Eq. (7.48) is familiar in information theory. If Ps

denotes the probability of finding the system in a given state s, then
(7.48) is a measure of the information content of that system.

For example, if we know the system to be in a given state s0,
then ps0 = 1 for s = s0 and ps = 0 for s ̸= s0. In this case (7.48)
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S = −k
∑

s Ps lnPs assumes its minimum value S = 0 corresponding
to maximum information. If we know nothing about the system,
then Ps = 1/Ω where Ω is the number of states. In this case

S = k lnΩ (7.49)

assumes its maximum value, corresponding to minimum information.
Note that definition (7.48) applies also to the microcanonical en-

semble where Ps = 1/Ω and the entropy (7.48) gives (7.49), which
is the expression used in the microcanonical ensemble.

7.5 First Law of Thermodynamics

Let us write the variation of energy for a reversible transformation

E =
∑
r

ErPr (7.50)

so that
dE =

∑
r

ErdPr +
∑
r

PrdEr. (7.51)

This relation expresses the first law of Thermodynamics. The second
term on the right hand side is the work done by the external world
acting on the system and is due to changes of levels while the distri-
bution is the same. Using Eq. (7.47) and the property

∑
r dPr ≡ 0,

since due to the normalization
∑

r Pr ≡ 1, the first term can be
written as ∑

r

ErdPr = −kTd

(∑
r

Pr lnPr

)
= −TdS, (7.52)

and represents the heat absorbed (the transfer of energy not due to
mechanical work). This term induces a change of energy caused by
the change of distribution of the level population while the levels are
kept fixed.

In conclusion, in an infinitesimal transformation the work done
increases the internal energy by shifting the energy levels and leaving
the distribution unchanged. On the contrary, the heat absorbed
increases the internal energy by changing the distribution probability
Pr. It is this second contribution that leads to the change of entropy,
which is in fact linked only to the distribution probability Pr.
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7.6 Canonical Distribution for Classical Systems

In the previous section, the canonical distribution was obtained for a
system with discretized energy levels. We want to find the canonical
distribution for a system of N classical particles. The question is
what is the probability to find a system in contact with a reservoir
at temperature T , whose generalized coordinates {q, p} are in the
volume range (q, q+dq) and (p, p+dp). Each configuration {q, p} has
a weight ρ(q, p) ≡ exp(−βH(q, p)) where H(q, p) is the Hamiltonian
of the system. The number of configurations in such a phase space
volume is dqdp/N !h3N . Hence the probability of finding a system in
a configuration in the range (q, q + dq) and (p, p+ dp) is given by

P (q, p)dqdp =
e−βH(q,p)

Z

dqdp

N !h3N
. (7.53)

Here Z is the partition function, which can be obtained using the
normalization condition

∫
P (q, p)dqdp = 1,

Z =
1

N !h3N

∫
e−βH(q,p) (7.54)

and we include the Gibbs correction factor 1/N ! due to the indistin-
guishability of the particles.

The ensemble average of any quantity A(q, p) in the canonical
ensemble is given by

⟨A⟩ =
∫
A(q, p)e−βH(q,p)dqdp∫

e−βH(q,p)
(7.55)

7.7 Energy Equipartition Theorem

Consider a classical system of N particles with Hamiltonian

H(q, p) =
3N∑
i=1

p2i
2m

+ V (q1 . . . q3N) +
∑
i

U(qi). (7.56)

Here V (q1, . . . , qN) is the interaction potential among the particles
and U(qi) is an external potential acting on a single particle, which
could represent the box in which the particles are confined if U(qi) =
0 when the coordinates qi falls within the box and ∞ when qi is at
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the borders of the box. We shall prove the following general theorem,⟨
xi
∂H
∂xj

⟩
= kTδij, (7.57)

where xi indicates any of the the generalized coordinates qi or pi,
and δij is the Kronecker delta which is 1 if i = j and zero otherwise.
The proof will be given in the canonical ensemble; a similar proof
can be given also in the microcanonical ensemble, but it is more
cumbersome.

If the average is taken over the canonical ensemble, then⟨
xi
∂H
∂xj

⟩
=

∫
xi

(
∂H
∂xj

)
e−βHdω∫

e−βHdω
, (7.58)

where for simplicity we have put

dω ≡ dx1 . . . dx6N . (7.59)

Note that
∂e−βH

∂xj
= −β

(
∂H
∂xj

)
e−βH, (7.60)

so (7.58) can be written as

⟨
xi
∂H
∂xj

⟩
= − 1

β

∫
xi

(
∂e−βH

∂xj

)
dω∫

e−βHdω
. (7.61)

Integrating the numerator by parts, we find

− 1

β

∫
xi

(
∂e−βH

∂xj

)
dω = − 1

β

{∫ [
xie

−βH]xmax
j

xmin
j

dωj −
∫

∂xi
∂xj

e−βHdω

}
.

(7.62)
where xmin and xmax are the extremum values of the coordinate xj
and dωj ≡ dω/dxj = dx1 . . . dxj−1dxj+1 . . . dx6N . The first term is
zero [

xie
−βH]xmax

j

xmin
j

= 0, (7.63)

since the Hamiltonian evaluated at its extrema is ∞. In fact, if xj
is one component of the momentum, the extrema of the momenta
are −∞ and +∞ and the first term in the Hamiltonian (7.56) di-
verges. On the other hand, if xj is one of the spatial coordinates,
then the external potential U(qj) becomes infinite at the extrema of
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the box. Therefore only the second term in (7.62) is nonzero, and
(7.61) becomes ⟨

xi
∂H
∂xj

⟩
=
kT
∫

∂xi

∂xj
e−βHdω∫

e−βHdω
. (7.64)

Since ∂xi/∂xj = δij from (7.64) follows the relation (7.61), which
proves the theorem.

Next we demonstrate an interesting consequence of this theorem.
From the Hamiltonian (7.56),

pi
∂H
∂pi

=
p2i
m
. (7.65)

From (7.61) for xi = xj = pi,⟨
pi
∂H
∂pi

⟩
= kT. (7.66)

Therefore from (7.65) and (7.66),⟨
p2i
2m

⟩
=

1

2
kT. (7.67)

Equation (7.67) expresses the fact that due to thermal motion any
kinetic degree of freedom possesses on average a kinetic energy equal
to kT/2. Since there are 3N momentum coordinates, the average
total kinetic energy is

3N∑
i=1

⟨
p2i
2m

⟩
=

3

2
NkT (7.68)

Relations (7.67) and (7.68) are quite general and hold for almost any
potential and hence for many systems in nature. Moreover, (7.68) of-
fers an interesting interpretation of the thermodynamic temperature
that is associated with the kinetic energy of the particles.

If the Hamiltonian contains also quasi-static terms in the q coor-
dinates, like for N harmonic oscillators, then the Hamiltonian can
be written as

H =
3N∑
i=1

(aip
2
i + biq

2
i ). (7.69)

it easy to show that
H = 3NkT, (7.70)
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so the total energy is comprised of two terms, 3NkT/2 from the 3N
coordinatespi and 3NkT/2 from the 3N coordinates qi.

7.8 Maxwell-Boltzmann Distribution

To study the momentum distribution f(p⃗) of a single particle in a
given system at fixed temperature T we use the canonical ensem-
ble. Here f(p⃗)dp⃗ is the probability of finding a given particle with
momentum p⃗ in the range (p⃗i, p⃗i + dp⃗i). i = 1, 2, 3 labels the com-
ponents of the momentum. This distribution can be evaluated by
integrating over the q and p coordinates of all the particles and the
q coordinates of the given particle

f(p⃗) =

∫
e−βHd3N−3pd3Nq∫
e−βHd3Npd3Nq

(7.71)

For a general Hamiltonian of the form

H =
3N∑
i=1

p2i
2m

+ V (q1, . . . , q3N), (7.72)

the integral in (7.71) can be performed, and we find

f(p⃗) =
e−βp2/(2m)

(2πmkT )3/2
. (7.73)

The prefactor in the denominator ensures the normalization∫
f(p⃗)d3p = 1. (7.74)

Expression (7.73) for f(p⃗) is the Maxwell-Boltzmann distribution
and is rather general.

Using p2 =
∑

i=1,3 p
2
i Eq. (7.73) can be cast as f(p⃗) = fsing(p1) ·

fsing(p2) · fsing(p3), where the single component distribution reads

fsing(pi) =
e−βp2i /(2m)

(2πmkT )1/2
. (7.75)

Hence the average kinetic energy for each component is given by

⟨p2i ⟩
2m

=
1

2
kT, (7.76)

which is another way of obtaining one of the consequences, (7.67),
of the energy equipartition theorem.
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7.9 Effusion

7.10 Ideal Gas in the Canonical Ensemble

Let us calculate the free energy for a system of N classical non-
interacting particles of mass m. Since V = 0, from (7.72) the Hamil-
tonian is the sum of all the kinetic energies of each particle

H =
3N∑
i=1

p2i
2m

. (7.77)

The partition function is, from (7.54),

Z =
1

h3NN !

∫
exp

(
−β
∑
i

p2i
2m

)
d3Nqd3Np. (7.78)

The integral over the 3N q variables is made over the volume V of
the box gives a factor V N , while the integral over the momenta can
be factorized

Z =
V N

h3NN !

[∫
e−βp2i /(2m)dpi

]3N
. (7.79)

Since the Hamiltonian contains no terms coupling the 6N position
and momentum coordinates, the partition function can be written
as

Z =
1

N !
ZN

1 , (7.80)

where

Z1 ≡
V

h3

[∫
e−βp2i /(2m)dpi

]3
. (7.81)

is the partition function of a single particle which can easily be car-
ried out

Z1 =
V

h3
(2πmkT )3/2. (7.82)

Hence from (7.80),

Z =
V N

h3N
1

N !
(2πmkT )3N/2. (7.83)

Using Stirling’s approximation (Appendix C), we find for large N

F = −kT lnZ = NkT

[
ln

{
N

V

(
h2

2πmkT

)3/2
}

− 1

]
. (7.84)
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From (7.19)

p = −∂F
∂V

=
NkT

V
, (7.85)

which gives the equation of state of the ideal gas

pV = NkT. (7.86)

From (7.9) the average energy is given by,

⟨E⟩ = −∂ lnZ
∂β

=
3

2
NkT, (7.87)

in agreement with the equipartition theorem (7.68).
The entropy S can be obtained using the relation 1.50, namely

S = −∂F
∂T

= −∂(−kT lnZ)

∂T
= k lnZ +

kT

Z

∂Z

∂T
= k lnZ +

3

2
Nk

(7.88)
where F is given by (7.84). In order to compare with the result
obtained in the microcanonical ensemble one must express T in Eq.
(7.87) in term of ⟨E⟩, which can be easily done using Eq. (7.87).
Doing that, one readily obtains the Sackur-Tetrode expression, Eq.
(6.26).

7.11 Harmonic Oscillators

A system of N decoupled harmonic oscillators can also be studied
using the canonical ensemble.

7.11.1 Classic treatment

Let us consider a collection of d-dimensional harmonic oscillators.
The Hamiltonian of the i-th oscillator is

Hi =
1

2
mω2q2i +

p2i
2m

. (7.89)

The total for N Hamiltonian oscillators is

H =
N∑
i=1

Hi. (7.90)
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As in the case of the ideal gas, the Hamiltonian does not couple any
of the 2N coordinates. Hence it is sufficient to calculate the partition
function of a single harmonic oscillator,

Z1 =
1

h

∫
e−β( 1

2
mω2q21)dq⃗1

∫
e−βp21/(2m)dp⃗1 =

1

(βh̄ω)d
(7.91)

The partition function of the total number of harmonic oscillators is
thus

Z = ZN
1 = (βh̄ω)−dN . (7.92)

In this case, there is no need to introduce the factorN !. The particles
are localized; hence they are distinguishable and there is no volume
dependence V N in the partition function. As a simple rule, every
time there is such volume dependence it is necessary to introduce
the N ! factor so that ln(V N/N !) ≈ N(ln V

N
− 1) will be an extensive

quantity.
It is straightforward to find expressions for F , E, and S. Thus

from the relation F = −kT lnZ,

F = NdkT ln
h̄ω

kT
, (7.93)

from E = −∂ lnZ/∂β,
E = NdkT, (7.94)

and from S = (E − F )/T ,

S = Ndk

(
ln
kT

h̄ω
+ 1

)
. (7.95)

Note that the energy agrees with the equipartition theorem.
A system of N harmonic oscillators can be considered as a model

for a solid. In this case, the energy is given by Eq. (7.93) and the
specific heat at constant volume is CV = Ndk. This is known as
the law of Dulong and Petit, and is satisfied for a large range of
temperature. At low temperature, experimentally it breaks down.
This difficulty is avoided in the quantum mechanical treatment.

7.11.2 Quantum mechanical treatment

The eigenvalues of the i-th harmonic oscillator are given by

ϵni
=

(
ni +

d

2

)
h̄ω (7.96)
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where ni = n
(1)
i + · · ·+ n

(d)
i and n

(k)
i = 0, 1, 2, ... .

Z =
∑

e−βE =
∑
{n(k)

i }

e−β(ϵn1+···+ϵnN
) =

∑
{n(k)

1 }

e−βϵn1

 · · ·

∑
{n(k)

N }

e−βϵnN

 = ZN
1

(7.97)
where Z1 is the partition function of a single harmonic oscillator,

Z1 =
∑
{n(k)

1 }

e−βϵn1 = e−βdh̄ω/2
∑
{n(k)

1 }

e−βh̄ωn1 =

= e−βdh̄ω/2

∑
{n(1)

1 }

e−βh̄ωn
(1)
1


d

=
e−βdh̄ω/2

(1− e−βh̄ω)d
. (7.98)

The average energy is then given by

⟨E⟩ = −∂ lnZ
∂β

= N

[
dh̄ω

2
+

dh̄ω

e−βh̄ω − 1

]
. (7.99)

and the specific heat d⟨E⟩/dT is

CV =

{
Ndk(βh̄ω)2e−βh̄ω for T → 0
Ndk for T → ∞ (7.100)

Note that as T → ∞ , (7.99) and (7.100) are consistent with the
classical result (7.94).

7.12 Paramagnetism

Consider again the system of Sec. 5.2, described by the Hamiltonian
(5.7)

H = −µ0H
N∑
i=1

Si, (7.101)

where the sum is over all N spins. The partition function is therefore
given by

Z =
∑
{Si}

exp[−βH(S1, . . . , SN)] =
∑
{Si}

exp[βµ0H
∑
i

Si], (7.102)
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where the sum is over the configurations of spins S1 = ±1, S2 =
±1, . . . , SN = ±1. From (7.102), we have

Z =
∑
{Si}

eβµ0H
∑

i Si = (7.103)

=

 ∑
{S1=±1}

eβµ0HS1

 ∑
{S2=±1}

eβµ0HS2

 . . .

 ∑
{SN=±1}

eβµ0HSN

 .

Hence
Z = ZN

1 =
(
eβµ0H + e−βµ0H

)N
, (7.104)

where Z1 is the partition function of one single particle.
The magnetization is defined by

M = µ0

⟨
N∑
i=1

Si

⟩
= µ0

N∑
i=1

⟨Si⟩ = Nm (7.105)

where m is the magnetization of a single spin. This quantity can be
computed as follows. In general, given a Hamiltonian which contains
a term xX,

H = H0 − xX, (7.106)

where x is a variable, X is an external field, and H0 is independent
of x, the following relation holds:

⟨X⟩ = ∂ lnZ

∂(βx)
. (7.107)

In our case, x = H and X = µ0S, and m is obtained directly from
the partition function (7.104) by taking the derivative with respect
to βH. One has

m = µ0⟨S⟩ = µ0
eβµ0H − e−βµ0H

eβµ0H + e−βµ0H
= µ0 tanh(βµ0H). (7.108)

Figure 7.1 shows the magnetization as a function of the field vari-
able µ0H. For h ≫ kT , the magnetization asymptotically reaches
its saturation value m = µ0. Physically, this means that for a fixed
temperature for values of the field such that µ0H ≫ kT , the ther-
mal energy is much less than the magnetic energy and almost all
the spins are aligned with the magnetic field. For µ0H ≪ kT , the
hyperbolic tangent can be approximated with the first term of its
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Taylor expansion, and the magnetization is linear in H – i.e., for H
small enough that µ0H ≪ kT , the thermal energy is large enough
that not all the spins are aligned to the field. The smaller the field,
the fewer is the number of spins that are aligned, on average, with
the field.

-1 -0,5 0 0,5 1

µ
0
H

-1

-0,5

0

0,5

1

m
/µ

0

 β=1
β=1/2
β=1/5
β=1/20
β=0

Figure 7.1: The magnetization m/µ0 of a paramagnet (Eq. (7.108)) is plotted
against µ0H for different values of β (see key).

Another quantity of interest is the magnetic isothermal suscepti-
bility, which is defined as

χT ≡
(
∂M

∂H

)
T

. (7.109)

To better understand the meaning, we rewrite (6.110) in the follow-
ing way:

χT δH = δM. (7.110)

Therefore χT is a response function, measuring the response of the
magnetization to an infinitesimal increase in field. The larger is χT ,
the more susceptible is the system to a variation of the external field.

The susceptibility at H = 0 can be easily computed from (7.108),

χT =

(
∂M

∂H

)
T

∣∣∣∣
H=0

= N
µ2
0

kT
. (7.111)

Note that as T decreases, χ increases and diverges as T → 0. In
fact, from Fig. 7.1 we see that the slope of M at H = 0 increases as
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T decreases. Thus as T → 0, the system passes from M = 0 to Nµ
when the field changes by a small amount.



Chapter 8

Grand Canonical Ensemble

8.1 Introduction

The grand canonical ensemble applies to those systems that can ex-
change both energy and particles. To find the probability distribu-
tion that characterizes the grand canonical ensemble, we proceed in
the same manner as we did in the previous chapter for the canonical
ensemble. We first study the equilibrium conditions for the systems
A and A′ in thermal contact, and find that they can exchange both
energy and number of particles. For this purpose, we ask what is the
probability P (E,N) that the system A has energy E and number
of particles N and system A′ has energy E ′ and number of particles
N ′ under the conditions that for both systems the total energy

Etot = E + E ′ (8.1)

and number of particles

Ntot = N +N ′ (8.2)

must be constant and equal to the total energy Etot and Ntot for
the isolated system A + A′. Under the assumption that the two
systems are in equilibrium, the probability P (E,N) is given by the
total number of configurations for the system A + A′ such that
the subsystem A is in a macroscopic state of energy E and number
of particles N and the subsystem A′ is in a macroscopic state of
energy E ′ and number of particles N ′ , divided by the total number
of accessible configurations Ωtot for the system A + A′. Under the
assumption that the two subsystems A and A′ are weakly interacting,

93
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P (E,N) is given by

P (E,N) =
Ω(E,N)Ω′(E ′, N ′)

Ωtot

(8.3)

where Ω(E,N) is the number of configurations for the system A to
be in a macroscopic state characterized by an energy lying between
E and E+δE and number of particles N . Similarly, Ω′(E ′, N ′) is the
number of configurations for the system A′ to be in a macroscopic
state characterized by an energy lying between E ′ and E ′ + dE ′ and
number of particles N ′.

The probability distribution (8.3) arises from the equal a priori
probability postulate, which applies to the total system A+ A′ which
is assumed to be in equilibrium and isolated.

The value of E and N which corresponds to the maximum prob-
ability will coincide with the average energy and number of particles
since P (E,N) for N and N ′ very large is extremely sharply peaked
around the values E and N . Since P (E,N) is the equilibrium dis-
tribution, E and N are the mean values for the system A when in
equilibrium.

The conditions that E and N must satisfy are therefore the con-
ditions for the system A to be in equilibrium with the system A′.
These conditions are found by requiring that P (E,N) is a maximum
– or, equivalently, that lnP (E,N) is a maximum,

∂ lnP (E,N)

∂E

∣∣∣∣
N

= 0, (8.4)

and
∂ lnP (E,N)

∂N

∣∣∣∣
E

= 0, (8.5)

Condition (8.4) gives, from (8.3),

∂ lnΩ(E,N)

∂E

∣∣∣∣
N

=
∂ lnΩ′(E ′, N ′)

∂E ′

∣∣∣∣
N ′
. (8.6)

The relation (8.6), found already for the canonical ensemble, requires
that the temperatures of systems A and A′ coincide,

β(E,N) = β′(E ′, N ′), (8.7)

where we recall

β(E,N) =
∂ lnΩ(E,N)

∂E

∣∣∣∣
N

. (8.8)
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On the other hand, the condition (8.5) gives

∂ lnΩ(E,N)

∂N

∣∣∣∣
E

=
∂ lnΩ′(E ′, N ′)

∂N ′

∣∣∣∣
E′
. (8.9)

which requires that

βµ(E,N) = β′µ′(E ′, N ′), (8.10)

where µ is the chemical potential, given by

βµ(E,N) =
∂ lnΩ(E,N)

∂N

∣∣∣∣
E

. (8.11)

Condition (8.7), β = β′, implies that

µ(E,N) = µ′(E ′, N ′) (8.12)

Relations (8.7) and (8.12) are the conditions for systems A and
A′ to be in equilibrium.

Next, making the hypothesis that system A′ is much larger than
A, so that A′ can be considered to be a reservoir of energy and par-
ticles, we can calculate the grand canonical probability distribution
Pr that at equilibrium system A in contact with reservoir A′ is in
a particular configuration r characterized by energy Er and number
of particles Nr. Following the same arguments as for the canonical
ensemble (Chapter 7), we find

Pr =
ΩA′({r′})
Ωtot

A+A′
, (8.13)

where
Etot = Er + E ′

r′ (8.14)

and
Ntot = Nr +N ′

r′ . (8.15)

For Er ≪ Etot and Nr ≪ Ntot , we can expand lnPr around
Er = 0 and Nr = 0,

lnPr = C − β′Er + µ′β′Nr + . . . , (8.16)

where

β′ =
∂ lnΩA′({r′})

∂E ′

∣∣∣∣ N ′ = Ntot

E ′ = Etot

(8.17)
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and

−µ′β′ =
∂ lnΩA′({r′})

∂N ′

∣∣∣∣ N ′ = Ntot

E ′ = Etot

. (8.18)

Since system A′ is a reservoir, at equilibrium the number of particles
N ′ and the energy E ′ will essentially coincide with Ntot and Etot.
This implies that β′ and µ′ are the inverse temperature and chemical
potential of system A′ when it is in equilibrium with system A.
Therefore due to conditions (8.7) and (8.12), they coincide with the
inverse temperature and chemical potential of system A – i.e.,

β′ = β and µ′ = µ. (8.19)

Following the arguments of Chapter 7 for the canonical distribu-
tion, we can neglect higher order terms in (8.13) and write

Pr =
e−βEr+βµNr

Z
, (8.20)

where Z is a normalization constant called the grand canonical par-
tition function. Imposing

∑
r Pr = 1, we find

Z =
∑
r

eβµNre−βEr , (8.21)

where the sum is now taken over all the states r independently of
the number of particles they are characterized by. Notice that the
grand-partition function can equivalently be written as

Z =
∑
N

eβµN
′∑
r

e−βEr , (8.22)

where the the first sum runs over all possible values of N and the
second sum runs over all microscopic states r such that Nr = N
(indeed one immediately recognizes that

∑
N

∑′
r ≡

∑
r).

Now Z can be written as∑
N

eβµNZN , (8.23)

where

ZN =
′∑
r

e−βEr , (8.24)
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is the partition function of the canonical ensemble for N particles.
The grand canonical partition function has the properties that(

∂ lnZ
∂(βµ)

)
β

=

∑
rNre

−βEr+βµNr

Z
= ⟨N⟩, (8.25)

and(
∂2 lnZ
∂(βµ)2

)
β

= kT

(
∂⟨N⟩
∂µ

)
T

= ⟨N2⟩ − ⟨N⟩2 ≡ ⟨(∆N)2⟩, (8.26)

where

⟨N2⟩ =
∑
r

N2
r e

−βEr+βµNr

Z
. (8.27)

Thus the grand canonical partition function (8.23) can be used to
calculate fluctuations. Equation (8.26) relates the fluctuation of the
number of particles to the derivative of ∂⟨N⟩/∂µ. This last quan-
tity is not easily accessible experimentally. Therefore it is better to
express it in terms of pressure P and volume V . We will show that(

∂⟨N⟩
∂µ

)
V,T

= −⟨N2⟩
V 2

(
∂V

∂P

)
N,T

. (8.28)

From (8.26) and (8.28),

⟨(∆N)2⟩
⟨N⟩2

= −kT 1

V 2

(
∂V

∂P

)
N,T

. (8.29)

from which

⟨(∆ρ)2⟩
⟨ρ⟩2

=
kT

⟨N⟩

(
∂⟨ρ⟩
∂P

)
N,T

=
kT

⟨N⟩
χT . (8.30)

Here ρ ≡ ⟨N⟩/V , ⟨(δρ)2⟩ is the density fluctuation and χT =
(

∂⟨ρ⟩
∂P

)
N,T

is the so called isothermal compressibility.
Equation (8.30) relates the compressibility to the density fluc-

tuation. This is one of the fluctuation-dissipation relations, which
we have already introduced in the canonical ensemble. The com-
pressibility represents the response function. Physically it gives the
density variation due to an infinitessimal variation of the external
pressure. Relation (8.30) says that the larger the equilibrium density
fluctuation is the larger will be the variation of the density induced
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by the change of the external pressure. We will now offer a proof of
relation (8.28).

Differentiating the thermodynamic relation G = Nµ, we obtain

dG = µdN +Ndµ. (8.31)

From (1.62) and (1.57) we also have

dG = µdN − SdT + V dP. (8.32)

Combining (8.31) and (8.32)

Ndµ = −SdT + V dP, (8.33)

which gives
dµ = vdP − sdT, (8.34)

in which we have introduced the intensive variables v ≡ V/N and
s ≡ S/N . From (8.34) (

∂µ

∂P

)
T

= v. (8.35)

Using the mathematical relation (Appendix)(
∂µ

∂P

)
T

=

(
∂µ

∂v

)
T

(
∂v

∂P

)
T

(8.36)

it follows that (
∂µ

∂v

)
T

= v

(
∂P

∂v

)
T

, (8.37)

in which v can change either by changing V and keeping N fixed or
by keeping V fixed and changing N . Therefore the left-hand side
of (8.37) can be written as(

∂µ

∂v

)
T

= −N
2

V

(
∂µ

∂N

)
T,V

. (8.38)

Therefore

v

(
∂P

∂v

)
T

= −N
2

V

(
∂µ

∂N

)
T,V

. (8.39)

Since the left-hand side of (8.39) can be written as

v

(
∂P

∂v

)
T

= V

(
∂P

∂V

)
T,N

, (8.40)
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then (8.39) becomes

−N
2

V

(
∂µ

∂N

)
T,V

= V

(
∂P

∂V

)
T,N

, (8.41)

and (
∂N

∂µ

)
T,V

= −N
2

V 2

(
∂V

∂P

)
T,N

, (8.42)

which coincides with (8.28) if one considers that the Thermodynam-
ics variable N = ⟨N⟩.

8.2 Particle Number Distribution and the Grand
Thermodynamic Potential

The grand partition function Z of system A in contact with a reser-
voir is, from (8.23),

Z =
∑
N

eβµN−βF (N,β), (8.43)

where
F (N, β) = −kT lnZ(N, β) (8.44)

is the free energy of system A and Z(N, β) is its partition function.
We want to show that in the thermodynamic limit, −kT lnZ is the
grand potential Φ = −PV of (1.64).

We first will show that the particle number distribution PN is
extremely peaked around its most probable value N , and becomes
a delta function in the thermodynamic limit

PN =
e−β[−µN+F (N,β)]

Z
. (8.45)

We can expand lnPN around its maximum value N or, equivalently,
expand the exponent −µN + F (N, β) around its minimum

−µN +F (N, β) = −µN +F (N, β)+
1

2

(
∂2F

∂N2

)
N=N

(N −N)2+ . . . .

(8.46)
The condition for the minimum gives(

∂F

∂N

)
N=N

= µ (8.47)
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which gives the thermodynamic relation between free energy and
chemical potential. The second derivative of F gives(

∂2F

∂N2

)
N=N

=

(
∂µ

∂N

)
N=N

. (8.48)

Therefore the particle number probability distribution is

PN =
e−β[−µN+F (N,β)]

Z
e−(N−N)2/2∆2

(8.49)

where, from (8.42), the particle number fluctuation is

∆2 =
N

2

V 2

(
∂V

∂P

)
T,N

. (8.50)

Now ∆2 is proportional to volume V in the thermodynamic limit,

∆

⟨N⟩
∝ 1√

N
. (8.51)

Therefore the probability distribution becomes a delta function in
the density variable ρ ≡ N/V , when N → ∞ and V → ∞. Hence, in
the thermodynamic limit, the only macroscopic state that is realized
is the one with density ρ = ρ, and the grand canonical ensemble
becomes equivalent to the canonical ensemble.

Finally, the grand partition function is

Z = exp[β(µN − F (N, β))]
∑
N

exp

[
− 1

2∆2
(N −N)2

]
, (8.52)

from which we find

lnZ = β[µN − F (N, β)] (8.53)

when we have neglected the term ln
∑

N exp[−(N −N)2/2∆2] which
is of order O(lnN). Finally, recalling that

F (N, β) = E − TS, (8.54)

and that
G = µN = E − TS + PV, (8.55)

we find from (8.53),
−kT lnZ = −PV, (8.56)

which is the desired relation.

8.3 Adsorbiment



Chapter 9

Alternative approach:
Entropy Maximization

9.1 Boltzmann entropy

In Chapter 7, we obtained the canonical ensemble for a system in
contact with a reservoir. We now offer a rather different formula-
tion, based more on the idea of a statistical ensemble. We will also
be able to reformulate the equal a priori probability postulate of
Statistical Mechanics in a more general form, which may help gain
better understanding of the fundamentals of Statistical Mechanics.

Consider a macroscopic isolated system comprised of N subsys-
tems. Each subsystem is macroscopically equivalent to all the others,
they may or may not exchange energy and particles with all the oth-
ers (we will distinguish these cases in the following), which act as a
reservoir for that particular subsystem. The only constraint is that
the total energy Etot and number of particles Ntot is constant. This is
the ensemble that we will see can be used to describe the statistical
properties of any given subsystem A.

Under the hypothesis that theN subsystems interact weakly with
one another, we can characterize the microscopic state by an index r,
an associated energy Er, and a number of particles Nr. We ask how
the system distributes at a given time over the available microscopic
configurations. If nr is the number of subsystems in the microstate
r, then we must have ∑

r

nr = N , (9.1)
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r

Ernr = Etot = NUE, (9.2)

and ∑
r

nrNr = Ntot = NN, (9.3)

The first condition implies that the total number of subsystems N
is fixed, the second and third conditions imply that the total en-
ergy NE and the total number of particles NN are fixed. Every
distribution nr which satisfies (9.1), (9.2) and (9.3) represents a pos-
sible macroscopic state of the entire system. Each distribution or
macrostate can be realized in many ways. The number of configura-
tions that realize a given distribution nr is given by the combinatoric
factor

W{nr} =
N !

n1!n2! . . . nr! . . .
. (9.4)

Indeed this is the number of ways to arrange N objects (represented
as blue balls in Fig. 9.1) into urns (represented as green boxes)
labeled by an index r each of which can only accomodate nr balls.
In order to do that we start to put one ball, that we can chose in N
ways into the first urn, than we put the second, that can be chosen in
N − 1 ways in the urn and so on. When the first urn is full we move
to the second and so on. This operation can be done in N ways,
which appairs at the numerator in Eq. (9.4). However configurations
where the n1 balls in the first urn are arranged in a different order
must not be counted as different, and the same for the other urns.
This accounts for the denominator in Eq. (9.4).

Since the total system is isolated at equilibrium, each microscopic
configuration is equally probable. Therefore the probability to find
a given distribution {nr} is proportional to W{nr}. Using Stirling’s
approximation in (9.4) and the condition (9.1), we find

lnW{nr} = N lnN −
∑
r

nr lnnr, (9.5)

or, in terms of the normalized distribution pr = nr/N ,

lnW{nr} = N lnN −
∑
r

nr lnnr = −N
∑
r

pr ln pr. (9.6)

Notice that, since W is the number of configurations associated with
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1 2 3 r

N

Figure 9.1: Explanation of the combinatorial factor of Eq. (9.4).

the distribution pr, the quantity S = N−1k lnW given by

S = −
∑
r

pr ln pr (9.7)

is by definition the entropy (per system) corresponding to that dis-
tribution. Eq. (9.7) is the celebrated Boltzmann (or, sometimes,
Gibbs, or Shannon) entropy formula.

Figure 9.2: Ludwig Boltzmann (Vienna, 20/02/1844 - Duino, 05/09/1906).
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9.2 Entropy maximization

The most probable distribution {n∗
r} is the distribution that max-

imizes W{nr} – or, equivalently, the distribution that maximizes
lnW{nr}, the entropy, subject to the conditions (9.1), (9.2) and
(9.3).

9.2.1 Microcanonical Ensemble

In this case each system has the same (non-fluctuating) energy Er ≡
E and particle number Nr ≡ N . Hence the three conditions (9.1),
(9.2) and (9.3) are equivalent. Using the method of Lagrange mul-
tipliers (Appendix D), we calculate the maximum of

lnWconst{nr} = lnW{nr} − α

(∑
r

nr −N

)
(9.8)

where α is the single Lagrange parameters that will be fixed to satisfy
the three equivalent conditions (9.1), (9.2) and (9.3).

Substituting (9.5) into (9.8) and maximizing with respect to the
quantity ns, using Eq. (9.5) we have

∂ lnWconst

∂ns

= − lnns − 1− α = 0, (9.9)

from which for the solution n∗
s we find

n∗
s = C, (9.10)

where the constant C = e−(1+α) can be fixed by requiring condition
(9.1),

C =
N
Ω
, (9.11)

where Ω =
∑

s 1 is the number of microstates. Hence, for the nor-
malized variable pr one has

p∗r =
1

Ω
, (9.12)

namely the same distribution obtained for an insulated system by
means of the postulate of equal probability.
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9.2.2 Canonical Ensemble

In this case each system has the same (non-fluctuating) particle num-
ber Nr ≡ N . Hence the two conditions (9.1) and (9.3) are equiva-
lent. Using again the method of Lagrange multipliers, we calculate
the maximum of

lnWconst{nr} = lnW{nr}−α

(∑
r

nr −N

)
−β

(∑
r

Ernr −NE

)
,

(9.13)
where α and β are the two Lagrange parameters that will be fixed
to satisfy conditions (9.1) and (9.2).

Substituting (9.5) into (9.13) and maximizing with respect to the
quantity ns, we have

∂ lnWconst

∂ns

= − lnns − 1− α− βEs = 0, (9.14)

from which we find
n∗
s = Ce−βEs . (9.15)

The constant C = e−(1+α) can be fixed by requiring condition (9.1),

C =
N∑

s e
−βEs

. (9.16)

Hence, introducing the normalized variable

pr =
nr

N
(9.17)

we finally find

p∗r =
e−βEr∑
s e

−βEs
, (9.18)

where β is fixed by requiring the condition (9.2). This is the same
distribution obtained previously in a canonical setting starting from
the equal a priori postulate for the insulated system.
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9.2.3 Grand Canonical Ensemble

Using again the method of the Lagrange multipliers, we must calcu-
late the maximum of

lnWconst{nr} = lnW{nr} − α

(∑
r

nr −N

)
(9.19)

− β

(∑
r

Ernr −NU

)
− γ

(∑
r

Nrnr −NN

)
.

Proceeding as before one readily arrives at

p∗r =
e−βEs+βµNr∑
s e

−βEs+βµNs
, (9.20)

where β and µ are fixed by requiring the condition (9.2) and (9.3).
Again, this is the canonical distribution that we obtained starting
from the postulate of equal a priori probability for the microcanon-
ical system.

9.2.4 Entropy maximization postulate

The formalism above has been developed starting from the equal a
priori postulate. However it indicates an alternative way of deriving
the ensemble distributions without assuming the equal a priory pos-
tulate. Indeed from the results of Secs. 9.2.1, 9.2.2, 9.2.3 it is clear
that the basic postulate of Statistical Mechanics can be replaced by
the following one: the ensemble distribution relative to a system in
equilibrium, is given by that distribution that maximizes the entropy
(9.6). However, this is correct only after showing that the distribu-
tions obtained are unique, which will be shown in the next section.

9.3 Unicity of the distribution

We next show that the most probable distribution {n∗
r} found in

Secs. 9.2.1, 9.2.2, 9.2.3, in the N → ∞ limit of the number of
systems in the ensemble, is the only distribution that is realized. To
this end, we expand (9.13) around the value n∗

r,

lnWconst{nr} = lnWconst{n∗
r}+

1

2

∑
r

(
∂2 lnWconst{nr}

∂n2
r

)
nr=n∗

r

(nr−n∗
r)

2+. . . .

(9.21)
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The first derivative is zero, while the second derivative is given by

∂2 lnWconst

∂n2
r

=
∂2 lnW
∂n2

r

= − 1

nr

. (9.22)

Moreover, due to the conditions (9.1) and (9.2), lnWconst{nr} =
lnW{nr}. Therefore from (9.21) and (9.22), we find a Gaussian
distribution

W{nr} = W{n∗
r} exp

[
−1

2

∑ (nr − n∗
r)

2

n∗
r

]
, (9.23)

with average value ⟨nr⟩ = n∗
r, and width (a measure of the rms

fluctuations)

∆n∗
r =

[
⟨(nr − n∗

r)
2⟩
]1/2

=
√
n∗
r. (9.24)

Therefore, considering that n∗
r ∼ N , we have in the N → ∞ limit

∆n∗
r

n∗
r

∼ 1√
N

→ 0. (9.25)

Or, proceeding similarly to what done in 2.3, considering the in-
tensive quantity associated to nr, namely the probability pr with
probability W{pr} one has

W{pr} = W{p∗r} exp
[
−1

2

∑ N (pr − p∗r)
2

p∗r

]
, (9.26)

Hence we find that the probability W ({pr}) to find a distribution
{pr} is extremely peaked around the distribution p∗r and becomes a
delta function in the limit N → ∞.



Chapter 10

Strongly Interacting
Systems and Critical
Phenomena

10.1 Generalities

Thus far we have considered systems of non-interacting (or weakly in-
teracting) particles, or constituents, degrees etc..., or systems which
are interacting but where the interaction can be eliminated by a
suitable transformation introducing the so called normal modes. We
have seen many prototypical examples, as e.g. paramagnets, per-
fect gases (classical or quantum), phonon gases, or the black body
radiation. In these cases all the thermodynamic functions can be
deduced from the knowledge of the energy levels of the single con-
stituents and are generally continuous quantities, with the notable
exception of the boson gas case.

In truely interacting systems the interaction terms cannot be elim-
inated by means of any known transformation and cannot be con-
sidered in any case negligible or small. Typical examples of systems
where this happens are materials close to a phase transition, as for
instance condensing gases or melting solids, phase-separating mix-
tures and solutions, magnetic materials, alloys undergoing an order-
disorder transition etc... In all these cases the single particle energy
levels are not sufficient to determine the Thermodynamics, since a
cooperative behavior sets in which often produces singularities in the
thermodynamic functions as phase-transitions are approached. As a
consequence, the mathematical description of these systems is very
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complicated and one usually resorts to extremely simplified models
where the form and the range of the interactions, the nature of lat-
tice, the properties of the constituents etc... are oversimplified. This
simplification procedure is nevertheless meaningful because univer-
sal properties, namely properties which only rely on the collective
behavior of the system and not on specific details, naturally emerge
when interactions and correlations are strong. Nevertheless, even
these oversimplified models are hardly tractable and new techniques
are needed to tame the mathematical difficulties.

10.2 Gas-Liquid-Solid transition

A paradigmatic example of phenomena that exhibit sharp changes as
a function of thermodynamic variables is the sudden density change
that occurs when a vapor, like water vapor, turns into liquid, or
when liquid water turns into ice (when pressure is kept constant as
the temperature steadily drops). In order to visualize these transi-
tion lines, we construct a phase diagram (Fig. 10.1), starting with
the equation of state, which indicates that, at equilibrium, the pres-
sure P , the volume V , and the temperature T of a one-component
homogeneous system satisfies the functional relation f(P, V, T ) = 0.
This equation of state defines a surface in a three-dimensional space
with coordinates P, V , and T . Projecting the equation onto a plane
P, T (left side of Fig. 10.1) gives rise to three regions, which corre-
spond to the solid, liquid, and gas phases. The solid and gas phases
are in equilibrium along the sublimation curve, the solid and liquid
along the melting curve, and the gas and liquid along the vapor-
pressure curve. The point of intersection of these three lines – where
the three phases coexist – is called the triple point. By crossing one
of the lines, the system exhibits a sudden density change going from
one phase to another.

Note that while the solid-liquid equilibrium line never ends, the
liquid-gas equilibrium line ends at a given point – called the critical
point – whose coordinates Pc, Vc, and Tc are called critical pressure,
critical volume, and critical temperature. This means that it is pos-
sible to change the liquid into a gas continuously by going around
the critical point.

In the following, we will study the behavior of the system close
to the critical point. To achieve this aim, we consider the projection
onto the plane P, V (right part of Fig. 10.1). At a sufficiently high
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Figure 10.1: p− T phase-diagram (left) and p− V phase diagram (right).

temperature, we expect the fluid to follow the equation of state for
ideal gases, PV = NkBT , which, for any fixed T , is characterized
by an hyperbola. As the temperature decreases, the effect of the
attractive interaction is felt and the curve shows a departure from
the hyperbola until, for T = Tc , the curve exhibits an inflection point
at V = Vc . For T below Tc there is a phase separation between the
gas and the liquid. For any value of the pressure all the volume
values between the values Va and Vb are possible, corresponding to
the coexistence of the gas and the liquid of densities ρG = N/Va and
ρL = N/Vb in various proportions. As function of T , ρG and ρL (or
Va and Vb) define a curve that joins at ρc (or Vc). The entire curve
is called the coexistence curve.

The differenceM ≡ ρL−ρG is a measure of the difference between
the two phases and is call the order parameter. As T → Tc from
below, the order parameter tends toward zero,

ρL − ρG → 0 as T → Tc, (10.1)

so the two phases become indistinguishable. Phenomenologically, we
discover that for T = Tc the curve at ρc has a flex. This implies that
the compressibility

χT ≡
(
∂ρ

∂P

)
T

→ ∞ as T → T+
c , (10.2)

as T approaches Tc from above. Below Tc we must define the com-
pressibility along the coexistence curve in the liquid and gas phases.
Phenomenologically, we discover that both these compressibilities
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diverge as T → Tc. The divergence of χT at Tc implies that in the
vicinity of the critical point the response of the system to a small
change in pressure is extremely large. It is this extremely nonlinear
behavior that characterizes a critical point.

From the fluctuation-dissipation relation (8.30) we can relate the
density fluctuation to the compressibility,

⟨ρ2⟩ − ⟨ρ⟩2

⟨ρ⟩2
=
kBT

N
χT . (10.3)

The divergence of the compressibility at the critical point implies
an extremely large density fluctuation in the vicinity of the critical
point. The presence of large density fluctuation gives rise to a spec-
tacular macroscopic phenomenon called critical opalescence. Con-
sider a gas contained in a baker at fixed density ρc . For T ≫ Tc,
the system is homogeneous and looks transparent to visible light. As
T ≈ Tc, the system becomes opalescent. Below Tc, the two phases
separate, the liquid at the bottom and the gas at the top. Criti-
cal opalescence occurs because, close to Tc, the system is dominated
by large density fluctuations. These fluctuations can be viewed as
droplets of the high density phase. When the linear size of those
droplets is comparable with the wavelength of the light, the light
is scattered in all directions, giving rise to a phenomenon visible to
the naked eye. As we will discuss at the end of this section the in-
tensity of the light scattered can be related to the density-density
correlation function g(x⃗− x⃗′), defined as

g(x⃗− x⃗′) ≡ ⟨[ρ(x⃗)− ⟨ρ(x⃗)⟩][ρ(x⃗′)− ⟨ρ(x⃗′)⟩]⟩ (10.4)

where ρ(x⃗) is the particle density at position x⃗, so that
∫
ρ(x⃗)dx⃗ = ρ.

The brackets stand for the average over all the configurations in the
grand canonical ensemble. Usually the particles interact via a two-
body potential that depends only on the distance between them.
Consequently, in the thermodynamic limit (when surface effects are
negligible), the system is translationally invariant: ⟨ρ(x⃗)⟩ does not
depend on the position x⃗ and ⟨ρ(x⃗)⟩ = ⟨ρ⟩ (the average density).
For the same reason g(x⃗− x⃗′) depends only on the distance between
r⃗ between x⃗ and x⃗′. Most systems are isotropic, implying that g
depends only on the modulus r of r⃗.

The density-density pair correlation function measures the corre-
lation between the density fluctuation at x⃗ and x⃗′. In the T → ∞
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limit where the effect of interactions is negligible, the system be-
haves as a collection of independent particles. Therefore the density
at point x⃗ is independent of the density at point x′, namely

g(r) ≡ ⟨(ρ(x⃗)− ⟨ρ⟩)(ρ(x⃗′)− ⟨ρ⟩)⟩ ≃ ⟨ρ(x⃗)− ⟨ρ⟩⟩⟨ρ(x⃗′)− ⟨ρ⟩⟩ = 0.
(10.5)

For lower temperatures one cannot neglect interparticle interactions
and the factorization in (10.5) is not allowed. The more g(r) differs
from zero, the larger the correlation between the density fluctuations
at x⃗ and x⃗′. The distance ξ within which g(r) differs from zero
represents the linear dimension of the droplet (fluctuation). More
precisely, ξ can be defined as

ξ2 ≡
∫
g(r)r2dr⃗∫
g(r)dr⃗

, (10.6)

where the integral extends over the entire volume of the system.
We show now that

∫
g(r)dr⃗ is related to the density fluctuation

and therefore diverges as T → Tc. In fact, recalling that r⃗ = x⃗− x⃗′

one has

V

∫
g(r)dr⃗ =

[∫
dx⃗′
] [∫

dr⃗ g(r)

]
=

[∫
dx⃗′
] [∫

dx⃗ g(r)

]
= ⟨

[∫
dx⃗ρ(x⃗)

] [∫
dx⃗′ρ(x⃗′)

]
⟩ − V 2⟨ρ⟩2

= V 2[⟨ρ2⟩ − ⟨ρ⟩2]. (10.7)

Therefore, in view of (10.3),∫
g(r)dr⃗ = kBT ⟨ρ⟩χT . (10.8)

Since χT diverges,
∫
g(r⃗)dr⃗ also diverges. This is due to the diver-

gence of ξ. Indeed it is usually found that for large r

g(r) ∼ e−r/ξ

rµ
, (10.9)

where µ is a critical exponent usually denoted d − 2 + η, implying
that (i) away from the critical point ξ is finite and the correlation
decays exponentially and (ii) at the critical point ξ = ∞ and the
correlation decays as a power law. Physically this means that al-
though a perturbation decays exponentially in a normal system, at
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criticality it propagates over all the system and then decays very
smoothly, i.e., algebraically – much less than an exponential. It is
this long-range correlation that gives to a cooperative behavior that
paves the way toward a new phase.

Not only χT diverges at the critical point. Indeed it is found
experimentally that the specific heat at constant volume CV also ex-
hibits a divergence, although much weaker than the compressibility.
Since the specific heat is proportional to the energy fluctuation, the
divergence of CV implies that closer to the critical point also the
energy fluctuations are very large, although smaller than the density
fluctuations.

Let us now explain what anticipated above, namely the relation
between the scattering of light and the correlation function g(r).
The standard theory of scattering relates the scattered intensity of
a monoatomic beam to the Fourier transform of g(r⃗),

g̃(q⃗) =

∫
g(r⃗)eiq⃗·r⃗dr⃗. (10.10)

More precisely if k⃗ is the wave vector of a monocromatic beam

incident on a homogeneous fluid and k⃗′ is the wave vector of the
diffracted beam (see Fig. xxx), the intensity of the scattered beam

I(q⃗) is proportional to g̃(q⃗) where q⃗ ≡ k⃗ − k⃗′ . Therefore, on taking
the Fourier transform of I(q⃗) one gets g(r⃗).

The forward scattering intensity I(0) gives a quantity propor-
tional to χ and the width of I(q⃗) gives a term proportional to ξ−2,

ξ−2 ∝
∫
I(q⃗)q2dq⃗∫
I(q⃗)dq⃗

. (10.11)

10.3 The Van Der Waals Theory

The Van der Waals equation is an equation of state for a fluid com-
posed of particles that have a non-zero volume and a pairwise at-
tractive inter-particle force (such as the Van der Waals force). It
was derived in 1873 by Johannes Diderik Van der Waals, who re-
ceived the Nobel prize in 1910 for ”his work on the equation of state
for gases and liquids”. The equation is based on a modification of
the ideal gas law and approximates the behavior of real fluids, tak-
ing into account the nonzero size of molecules and the attraction
between them.
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Consider first a gas which is composed of N non-interacting point
particles that satisfy the ideal gas law

p =
nRT

V
, (10.12)

where n the number of moles of the gas. Next assume that all
particles are hard spheres of the same finite radius r (the Van der
Waals radius). The effect of the finite volume of the particles is to
decrease the available void space in which the particles are free to
move. We must replace V by V − nb, where b is called the excluded
volume (per mole). The corrected equation becomes

p =
nRT

V − nb
, (10.13)

which is called Clausius equation. For hard spheres b is four times
the proper volume 4πr3/3 of a molecule, but empirical values for b
are usually lower than that due to the fact that molecules interact
via a soft potential.

Next, we introduce a pairwise attractive force between the parti-
cles. Van der Waals assumed that, not withstanding the existence
of this force, the density of the fluid is homogeneous. Further he as-
sumed that the range of the attractive force is so small that the great
majority of the particles do not feel that the container is of finite size.
Given the homogeneity of the fluid, the bulk of the particles do not
experience a net force pulling them to the right or to the left. This
is different for the particles in surface layers directly adjacent to the
walls. They feel a net force from the bulk particles pulling them into
the container, because this force is not compensated by particles on
the side where the wall is (another assumption here is that there
is no interaction between walls and particles, which is not true as
can be seen from the phenomenon of droplet formation; most types
of liquid show adhesion). This net force decreases the force exerted
onto the wall by the particles in the surface layer. The net force
on a surface particle, pulling it into the container, is proportional
to the number density ρ = N/V . The number of particles in the
surface layers is (again assuming homogeneity) also proportional to
the density. In total, the force on the walls is decreased by a factor
proportional to the square of the density, and the same applies to
the pressure on the walls p → p − a(n/V )2, where a is a constant.
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Hence one arrives to the Van der Waals equation

p+ a
n2

V 2
=

nRT

V − nb
. (10.14)

Notice that for ρ→ 0 it reduces to the perfect gas state equation.

Figure 10.2: Johannes Diderik Van der Waals (Leida, 23/11/1837 - Amsterdam,
08/03/1923)

The Van der Waals equation (10.14) is plotted in Fig. 10.3. For
high temperatures p is a monotonously decreasing function of the
volume. At a particular temperature Tc - the critical temperature -
an inflection point appairs at a certain volume Vc. The isothermal
compressibility χT = (∂ρ/∂p)N,T = −(N/V 2)(∂V/∂p)N,T diverges in
this point. In order to determine the critical point one has to solve
the system 

pc + a n2

V 2
c
= nRTc

Vc−nb
∂p
∂V

∣∣
pc,Vc,Tc

= 0
∂2p
∂V 2

∣∣∣
pc,Vc,Tc

= 0,

(10.15)

which yields  pc =
a

27b2

Vc = 3nb
Tc =

8a
27bR

.
(10.16)

Introducing the reduced variables
p̃ = p

pc

Ṽ = V
Vc

T̃ = T
Tc

(10.17)
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the Van der Waals equation (10.14) can be written in the universal
form (

p̃+
3

Ṽ 2

)(
3Ṽ − 1

)
= 8T̃ , (10.18)

which is a parameter-free form obeyed by all the substances which
are well described by the Van der Waals theory. This is called the
law of corresponding states. It is interesting to note that also most of
the substances which are not described by the Van der Waals theory
obey a law of corresponding states, namely the relation between
thermodynamic quantities is the same when the former are expressed
in terms of reduced variables.

Figure 10.3: The Van der Waals equation in a pV diagram. The downward
parabola is the coexistence region. In this area the Van der Waals curve is the
dashed-blue one (the horizontal green line is the Maxwell construction, which is
detailed in the right panel).

Below the critical temperature the Van der Waals isotherms os-
cillate. The red part of the isotherm between the points d and e in
the right panel of Fig. 10.3 is unphysical, since χT < 0 while Eq.
(10.3) states that it must be χT ≥ 0 (notice that, instead the regions
ad and ec of the curve do not violate any fundamental principle and,
in fact, this states correspond to metastable states - the superheated
liquid and the undercooled vapor). This happens because in the re-
gion below the downward parabola in Fig. 10.3 the fluid is no longer
homogeneous since, as it is well known, a liquid and the vapor co-
exist. In this region the pressure does not depend on the volume
and equals the vapor pressure PV . Hence the oscillating part of the
Van der Waals curve must be replaced by an horizontal line, the one
from a to c in the right panel of Fig. 10.3. The height where this
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line must be placed, i.e. the vapor pressure pV , can be inferred by
an argument due to Maxwell, the so called Maxwell construction. In
an isothermal process the variation of the Helmoltz free energy is
dF = pdV . Since the free energy is a state function its variation
in going from a state a to a state c must not depend on the path.
Hence, going along the Van der Waals isotherm adbec in Fig. 10.3
or along the straight line ac the quantity

∫
pdV must be the same.

In other words the areas adba and bceb must be equal. The Maxwell
argument (at least as it is expressed here) is not correct, since the
Van der Waals isotherm in the coexistence region does not describe
the equilibrium states of the fluid. However its conclusion is correct,
as it can be proven by refining the argument.

10.4 Ferromagnetic Transition

Other systems exhibit a phenomenology very similar to the liquid-
gas transition. As we have seen in Sec. 7.12 a paramagnetic system
has a macroscopic magnetization under the influence of an external
magnetic field. According to the results of Sec. 7.12, when this
external field approaches zero, the magnetization per particle m also
goes to zero. However, there are other materials, called ferromagnets
which even when there is no external magnetic field present, below
a critical temperature Tc (called the Curie temperature), exhibit a
spontaneous magnetization.

The equation of state f(H,m, T ) = 0 defines a surface in a space
of coordinates H,m, T . Projecting onto the plane H,T we obtain
the phase diagram (Fig. 10.4, left panel) that shows the existence
of a coexistence line for H = 0, T ≤ Tc separating the phase of pos-
itive magnetization and negative magnetization. As in the liquid-
gas system, the line ends at the critical point, with coordinates
H = 0, T = Tc. Projecting onto the (H,m) plane (Fig. 10.4, right
panel), we have m as a function of H for a fixed temperature T .
For high temperatures the system behaves as a non-interacting spin
system. From Eq. (7.108) of Chapter 7 we expect m = tanh(βµ0H),
which for small H is a straight line passing through the origin. As
the temperature decreases, the interaction among the spins becomes
relevant and there is a deviation from the straight line until T = Tc
and the curve shows flexibility. Below Tc one observes a disconti-
nuity in the magnetization at H = 0, corresponding to a first-order
phase transition. As in the liquid-gas transition, we define an order
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parameter m that for H = 0 goes to zero as the critical temperature
is approached from below, while the susceptibility χT = (∂m/∂H)
and the specific heat at constant H,CH diverge at the critical point.

Figure 10.4: Left: H − T phase-diagram which is analogous to the p − T dia-
gram in a liquid-vapor transition (also shown). Right: m − H phase diagram
(analogous to the p− V diagram in Fig. 10.1).

The fluctuation dissipation relation χT ∝ ⟨m2⟩ − ⟨m⟩2 can be
derived along the same lines as for Eq. (8.30). According to this
relation the divergence of the susceptibility implies large fluctua-
tions in the magnetization. The presence of large fluctuations in
the magnetization gives rise to a phenomenon very similar to criti-
cal opalescence near the liquid-gas transition. This phenomenon is
not manifested sending a beam of light on the sample, but instead
sending a beam of neutrons. Since the neutrons possess a magnetic
moment, they interact with the spins. When the wavelength associ-
ated with the neutrons become of the same order as the size of the
fluctuations the neutrons are scattered. The analog of the droplets
here are the magnetic domains of up and down spins. The intensity
of the neutron scattering is proportional to the Fourier transform of
the spin-spin pair correlation function, which is defined as

gij ≡ ⟨(S⃗i − ⟨S⃗i⟩)(S⃗j − ⟨S⃗j⟩)⟩, (10.19)

where S⃗i is the value of the spin at site i. The phenomenology here
is closely related to that of the liquid-gas transition: The correlation
length, roughly the size of the droplets, diverges as the critical point
is approached. In analogy with (10.7), it follows from (10.19) that∑

i,j

gij = ⟨M⃗2⟩ − ⟨M⃗⟩2, (10.20)

where M⃗ =
∑

i S⃗i is the total magnetization.
Although the liquid-gas transition and the ferromagnet-paramagnet

transition differ from each other in nature, they can nevertheless be
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described in the same way, and the same is true for other systems
near their respective critical points, as we will be discuss in Sec. 10.7.
The behavior of a system close to its critical point can be charac-
terized by an order parameter m → 0, a susceptibility χ → ∞, a
specific heat C → ∞, and a correlation length ξ → ∞ as the critical
point is approached. The order parameter is a measure of the or-
dered phase or, equivalently, the difference between the ordered and
the disordered phase. The susceptibility is a measure of the response
(variation) of the order parameter to an infinitesimal perturbation
of the field that is coupled to the order parameter. The divergence
of the susceptibility is a manifestation of a high nonlinear response
to a small perturbation. At the same time, due to the fluctuation
dissipation relations, it is also a manifestation of large fluctuations
whose size ξ diverges at the critical point – which, in turn, leads to
a power law behavior in the pair correlation function.

10.5 Critical Exponents

In the previous section we have seen that as a critical point is ap-
proached the order parameter goes to zero, and the susceptibility
of specific heat and the correlation length diverge. These behaviors
can be characterized quantitatively using critical exponents. For
example, we generally assume that the magnetization goes to zero
as

m = Atβ(1 +Bt∆1 + Ct∆2 + . . . ), (10.21)

where

t ≡
∣∣∣∣T − Tc

Tc

∣∣∣∣ , (10.22)

which represents the distance from the critical point. The critical
exponents β,∆1,∆2, . . . are positive numbers and the critical am-
plitudes A,B,C, . . . are constants. The dots represent higher order
terms in t. Very close to the critical point (t≪ 1) the term in paren-
thesis can be well approximated by 1 and the magnetization behaves
asymptotically as

m ≃ Atβ. (10.23)

More generally, if a function f(t) vanishes or diverges in t = 0, we
define the critical exponent λ as

λ ≡ lim
t→0

ln f(t)

ln t
. (10.24)
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Equation (10.25) implies that, close to t = 0, f(t) can be well-
approximated by f(t) ∼ Atλ. If λ > 0, f(t) vanishes, while if λ < 0,
f(t) diverges. For a function of the form in Eq. (10.21), the critical
exponent, defined using definition (10.25), coincides with β.

Other quantities, such as χT , CV , and ξ, diverge for T → T−
c and

as T → T+
c . In principle, one can introduce for each quantity two

exponents, one for T → T−
c and the other for T → T+

c . Experimental
data and model calculations are consistent with the same divergences
from above and below Tc. Therefore close to the critical point we
write simply

M ∼ Atβ, χ ∼ B±t
−γ, CV ∼ D±t

−α, ξ ∼ E±t
−ν , (10.25)

where β, γ, α, and ν are critical exponents (because they characterize
the critical behavior close to the critical point), B,D, and E are
amplitudes, and ± stands for T > Tc and T < Tc. Finally, right
at Tc, since the spontaneous magnetization vanishes one must have
limH→0M = 0, which allows us to introduce the exponent δ as

M ∼ H
1
δ . (10.26)

Again at Tc, after Eq. (10.9) for large values of r one has,

g(r) ∼ 1

rd−2+η
, (10.27)

where d is the dimensionality of the system and η is another critical
exponent.

Critical exponents are useful because they characterize critical
behavior and can easily be compared among different systems (unlike
entire functions, which are difficult to compare). Critical exponents
also show themselves to be universal in that they allow all systems
to be classified into a small number of universality classes, each class
characterized by its distinct set of critical exponents. The attention
focused on these critical exponents has been very important in the
study of critical phenomena. They are, in fact, the key quantities
by means of which any theory in critical phenomena is tested.

10.5.1 Critical exponents in the Van der Waals theory

Re-writing Eq. (10.18) in terms of the variables π = p̃−1, v = Ṽ −1
and t = T̃ − 1, which describe the distance from the critical point
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π = v = t = 0 one has

π =
8(t+ 1)

3v + 2
− 3

(v + 1)2
− 1. (10.28)

Along the critical isotherm t = 0 it is

π =
−3v3

(3v + 2)(v + 1)2
(10.29)

from which, in the vicinity of the critical point (v → 0) one has
π = −3v3/2 or

v ∼ π1/δ (10.30)

which is the analog of Eq. (10.26) in the liquid-gas transition, and
δ = 3.

Moreover, along the critical isocore (v = 0)[
∂p

∂V

∣∣∣∣
T

]
v=0

=
pc
Vc

[
∂π

∂v

∣∣∣∣
t

]
v=0

= −6
pc
Vc
t, (10.31)

and hence χT = −ρ2

N
∂V
∂p

∣∣∣
T
= [N/(6pcVc)]t

−1, or

χT ∼ t−γ (10.32)

which is the analog of the second equation in (10.25), and γ = 1.
Now we look at the region with t negative and small. From the

shape of the Van der Waals isotherm in Fig. 10.3 we see that, fixing
p appropriately there are three solutions for v. Indeed Eq. (10.28)
is cubic in the variable v, as it can be seen writing it as

3v3(1 + π) + 8(π − t)v2 + (7π − 16t)v + 2(π − 4t) = 0. (10.33)

As T → T−
c one solution tends to v = 0, and the remaining two

become symmetric around v = 0. This means that in Eq. (10.33)
the term of order v0 must disappear upon approaching criticality,
i.e. π ≃ 4t. With this result we write Eq. (10.33) as

v3(1 + 4t) + 8tv2 + 4tv = 0. (10.34)

Neglecting the higher order terms in t term 4t for t → 0 the two
symmetric solutions are v ≃ ±2(−t)1/2, and so

v ∼ |t|β (10.35)

which is the analog of the first equation in (10.25), with β = 1/2.
One can also show that the third equation in (10.25) is found with
α = 0.
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10.6 Ising Model

From a theoretical point of view, the phenomenology of critical phe-
nomena can be explained by starting with a realistic Hamiltonian,
calculating all the quantities (using the appropriate ensemble), and
comparing the results with experimental data. A realistic Hamilto-
nian is often very complicated to work with, however, and at a first
level one simply wants to understand the mechanisms that drive the
critical phenomenon. A simplified model, one that contains the es-
sential ingredients for reproducing the phenomenon but leaves out
the inessential, is needed. In this section we will study such a model,
the Ising model, as it is applied to the paramagnet-ferromagnet tran-
sition.

The Ising model was introduced by Ising and Lenz as a simplified
model for describing the transition between paramagnetic and ferro-
magnetic phases (characterized by the presence of magnetism below
some critical temperature Tc, even for H → 0). We recall that a
paramagnetic system of N spins localized on the sites of a lattice
and interacting with an external field H, is well described by the
Hamiltonian

H = −µ0H
N∑
i=1

Si, (10.36)

where Si = ±1 are the components of the spin i along the direc-
tion of the field. It was shown in Sec. 7.12 that the magnetization
per spin m = µ0 tan(βµ0H), and therefore approaches zero or any
temperature T as H → 0. Hamiltonian (10.36) neglects all the in-
teractions among the spins. In the ferromagnetic Ising model, an
interaction term Hint is added to Hamiltonian (10.36), i.e.,

Hint = −J
∑
⟨ij⟩

SiSj, (10.37)

where J > 0 is the strength of the interaction and the sum extends
over all nearest neighbors on a lattice. To understand the effect of the
interaction, consider two neighbor spins, e.g., 1 and 2: −JS1S2 = −J
if the two spins are parallel S1 = S2 = ±1, otherwise −JS1S2 = +J
if the two spins are antiparallel S1 = −S2 = ±1. We see that,
in terms of energy, the spins tend to be parallel. For example, for
T = 0 the system choses the configurations with minimum energy.
For H = 0 these configurations are given by all spins up or all spins
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down. This consideration shows how the interaction term (10.37)
may favor the alignment of the spins and therefore may induce the
phenomenon of spontaneous magnetization. As usual, thermody-
namic properties can be extracted, in the canonical ensemble, from
the partition function,

Z =
∑
{Si}

exp

βH∑
i

Si + βJ
∑
⟨ij⟩

SiSj

 , (10.38)

where the sum is over all spin configurations, and for simplicity we
have chosen µ0 = 1.

10.7 Other phase-transitions described by the
Ising model

One of the features of the Ising model is that it is extremely versatile,
e.g., it can be mapped onto other models which are suited to describe
phase-transition in apparently very different systems.

10.7.1 Lattice-Gas

The lattice gas model is a simple model that describes the liquid-gas
transition. One begins with a Hamiltonian for a simple fluid of the
form

H =
3N∑
i=1

p2i
2m

+
∑
i<j

U(|r⃗i − r⃗j|), (10.39)

where the particles interact via a two-body potential. In the grand
canonical ensemble, the grand partition function is

Z =
∑
N

eβµNZN , (10.40)

where ZN is the partition function with N particles fixed. By inte-
grating the momentum variables in ZN and considering that

λ ≡
∫
e−β[p2/(2m)]dp⃗ = (2πmkT )3/2, (10.41)
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we can write

Z =
∑
N

eβµeffN
1

N !

∫
exp

[
−β
∑
i<j

U(|r⃗i − r⃗j|)

]
dr⃗1. . . . , dr⃗N ,

(10.42)
where µeff = µ+ kT lnλ.

Now we consider a simplification of (10.42) by assuming that the
particle coordinates {r⃗i} can take only discrete values corresponding
to the cells of a lattice. Morever, in analogy with the behavior of the
Van der Waals potential for simple fluids (Fig. xx), the interparticle
interaction is taken as a hard core plus an interactive potential,

U(r⃗i − r⃗j) =

 ∞ if r⃗i = r⃗j
−ϵ if r⃗i and r⃗j are nearest neighbors
0 otherwise

. (10.43)

Each configuration in real space is given by {ni}, where ni = 1
or zero indicating whether a cell is occupied by a particle or not.
Because of the hard core repulsion, two particles cannot occupy the
same cell. This approximation is called the lattice-gas. The energy
of a given configuration can be written −ϵ

∑
⟨ij⟩ ninj and the integral

in (10.41) is therefore replaced by

1

N !

∫
exp

[
−β
∑
i<j

U(|r⃗i − r⃗j|)

]
dr⃗1. . . . , dr⃗N =

∑
{ni}

∗
exp

βϵ∑
⟨ij⟩

ninj

 .
(10.44)

The sum is over all configurations and the asterisk indicates that the
configuration must satisfy the condition

∑
i ni = N , so

∑
N

∑∗
{ni} =∑

{ni}. The correct Boltzmann counting 1/N ! is disappeared in go-
ing to the representation in terms of the ni’s since cells cannot be
overcounted (they are distinguishable because the sub-indexes i, j
are now their positions).

Thus from (10.42) and (10.44) the lattice-gas grand-partition func-
tion follows

ZLG =
∑
{ni}

exp

βµeff

∑
i

ni + βϵ
∑
⟨ij⟩

ninj

 , (10.45)

where the sum is over all possible configurations of particles.
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To make the connection with the Ising partition function, we
note that the Ising variables can be expressed in terms of lattice gas
variables

Si = 2ni − 1, (10.46)

where ni = 0, 1 for Si = +1,−1. If we use (10.46) in (10.38), the
Ising partition function ZI becomes

ZI

(
J

kT
,
H

kT

)
=
∑
{ni}

exp

βµeff

∑
i

ni + βϵ
∑
⟨ij⟩

ninj +W0

 ,
(10.47)

where

µeff = 2H − 2Jz (10.48)

ϵ = 4J

W0 = β(JNz/2−HN),

and z is the coordination number, namely the number of nearest-
neighbor sites to a given site (be careful not to sum the interactions
twice!)

From (10.47) we see that the Ising and lattice gas models are
equivalent,

ZI

(
J

kT
,
H

kT

)
= ZLG

( ϵ

kT
,
µeff

kT

)
eW0 , (10.49)

where , ϵ, µeff , and W0 are related to J and H through (10.49).

10.7.2 Antiferromagnets

An antiferromagnet is a material where the interactions among spins
favor anti-alignement. Experimentally one observes a phase-transition
at a critical temperature Tc. For T > Tc spins are disordered, while
below Tc there is a prevalence of anti-aligned neighboring spins. An
antiferromagnet can be described by an Ising-like model with an
interaction term Hint as in Eq. (10.37) but with J < 0. Let us con-
sider the one-dimensional case to start with. Introducing the new
spin variable σi = (−1)iSi one has

Hint = −J
∑
i

SiSi+1 = −J
∑
i

−σiσi+1 = −|J |
∑
i

σiσi+1. (10.50)
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Then in term of the new variables the Hamiltonian can be written
exactly as for a ferromagnet, namely with positive coupling constant.
This implies that, with H = 0, the thermodynamic properties of an
antiferromagnet are the same as those of a ferromagnet (notice how-
ever that in the presence of an external field the mapping between
the two models cannot be done). A similar argument can be done in
d > 1 if the lattice can be devided into two separated sub-lattices A
and B such that two nearest neighbor spins always belong to differ-
ent sub-lattices. In this case the transformation is σi = ±Si, where
the symbol + applies to the spins belonging to the sub-lattice A and
- in the other case. In d = 1 the two sub-lattices reduce to even or
odd i. Such sub-lattices can be found e.g. in d = 2 for a square
lattice but not for a triangular one.

10.7.3 Binary Mixtures

A binary mixture is a composite substance made of two kind of
constituents, denoted as A and B. Experimentally one finds that a
critical temperature Tc exists such that for T > Tc the mixed state
is stable while the two substances demix below Tc. If one imagines
particles to jump on the sites of a lattice, these substances can be
modeled by an Ising-like model where Si = +1 corresponds to an A
particle and Si = −1 to a B particle. Assuming that interactions may
occur only between neighboring sites we denote with ϵAA, ϵBB,and
ϵAB their strengths. An Ising Hamiltonian

H = −J
∑
⟨ij⟩

SiSj − µ0H
∑
i

Si +
z

2
Nk (10.51)

can be introduced, where z is the coordination number of the lattice,
N is the total number of lattice sites, and the last term, where k is
a constant, does not influence the properties of the system being an
additive constant to the energy.

In order to find the correspondence between J, µ0H, k and ϵAA,
ϵBB, ϵAB let us consider the following three situations: 1) all the
spins are up, 2) all the spins are down, and 3) all the neighboring
spins are anti-aligned (when the lattice allows it). The total energies
of these states are, respectively,

NzϵAA

2
= −NzJ

2
−Nµ0H +

z

2
Nk (10.52)
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for state 1,
NzϵBB

2
= −NzJ

2
+Nµ0H +

z

2
Nk (10.53)

for state 2, and
NzϵAB

2
=
NzJ

2
+
z

2
Nk (10.54)

for state 3. Eqs. (10.52,10.53,10.54) allows one to map the energy
of the system into the Ising form (10.51).

10.8 Broken Symmetry

The Hamiltonian of the Ising model in a zero field is given by (10.37),
and is invariant if we change Si → S ′

i = −Si, H{Si} = H{S ′
i}. The

average total magnetization m per spin is given by

m ≡ 1

N

∑
i

mi, (10.55)

with

mi ≡
1

Z

∑
{Si}

Sie
−βH{Si}. (10.56)

Since the sum is over all values of the spin variables, we can change
variables S ′

i = −Si and sum over all spin variables S ′
i . From (10.56)

and using the symmetry of the Hamiltonian

mi ≡ − 1

Z

∑
{S′

i}

S ′
ie

−βH{S′
i} = − 1

Z

∑
{Si}

Sie
−βH{Si} = −mi. (10.57)

In conclusion, mi = −mi implies mi = 0. This result is not due to
the simplicity of the Ising model, but is quite general, being valid for
any realistic Hamiltonian that does not have a preferred axis of sym-
metry. This seems to contradict the fact that in many materials we
observe a spontaneous magnetization below a critical temperature.

More generally, any realistic Hamiltonian system is usually in-
variant under many symmetry operations such as translations or
rotations. We would therefore expect on the basis of pure symmetry
arguments that the thermodynamic state should also be invariant
under the same symmetry operation. This is in contradiction with
everyday experience where we observe for example solid materials
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that are not invariant under translation. Indeed, many thermody-
namic states we observe do not possess some of the symmetries that
characterize the microscopic Hamiltonian that describes the system.
When this happens, it is usually said that the system exhibits a
spontaneously broken symmetry.

Coming back to the Ising model, in order to find a value m ̸= 0
we must necessarily break the symmetry by introducing a field H in
the Hamiltonian. Even if this does not seem to correspond to a case
of spontaneous symmetry breaking, let us consider the issue more
carefully and calculate the magnetization m(H,T,N). By taking
H → 0 first and then N → ∞ the result will be always zero, i.e.

lim
N→∞

lim
H→0

m(H,T,N) = 0. (10.58)

This follows from the fact that, for finite N , m(H,N) is an analytic
function, since in Eq. (10.56) it is given by a sum of a finite number
of analytic functions. Therefore, by definition, the limit H → 0 is
equal to the function calculated at H = 0, i.e.,

lim
H→0

m(H,T,N) = m(0, T,N) = 0, (10.59)

where the second equality follows from the previous symmetry ar-
gument. On the other hand, by taking first the limit N → ∞, the
magnetization may be non-analytic below some temperature. There-
fore the second limit H → 0 does not necessarily coincide with the
value calculated at H = 0 and it may happen that

lim
H→0

lim
N→∞

m(H,T,N) ̸= 0 (10.60)

We then say that there is a spontaneously broken symmetry if this
happens for some range of the temperature.

Now let us see in more detail the mechanism giving rise to the
spontaneous symmetry braking (10.60). We still consider the Ising
model, but all the considerations and their validity are rather gen-
eral. Given the Ising Hamiltonian for N spins, let us calculate the
probability distribution P (m,H, T,N) that at temperature T and
external field H, the system has a magnetization M = Nm, i.e.,

P (m,H, T,N) =
1

Z

∑
{Si}

(m)
e−βH =

1

Z
eβHM−βF0(m,T,N), (10.61)
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where the
∑(m) means that the sum is over all configurations such

that
∑N

i=1 Si =M and

exp[−βF0(m,T,N)] =
∑
{Si}

(m)
exp

βJ∑
⟨ij⟩

SiSj

 . (10.62)

The partition function can be written as

Z =
∑
m

exp[βHM − βF0(m,T,N)]. (10.63)

Following the standard procedure in the canonical ensemble, the sum
in Eq. (10.63) is dominated by the maximum of HM −F0(m,T,N)
which satisfies the equation H = (∂f0/∂m)T,N , where we have in-
troduces the free energy density f0 = F0/N . This value is a maxi-
mum for the probability (10.61) and a minimum for the free energy
F (m,H, T,N) = F0(m,T,N)−HM .

0

m

f 0(m
,T

)

T<T
c

T>T
c

Figure 10.5: Free energy f0(m,T ) of the Ising model as a function of the mag-
netization (per spin) m.

Consider first the case H = 0. Due to the symmetry f0(m,T ) =
f0(−m,T ), for high temperatures we expect a minimum in the free
energy at m = m = 0 and a maximum for the probability. For very
low temperatures T → 0, the free energy is dominated by the en-
ergy that has two minima, one at +m and one at −m with, in the
T = 0 case, m = 1. Therefore we also expect two minima in the free
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energy (Fig. 10.5) for temperature below some critical temperature
Tc. Note that, in this case H = 0, the distribution is symmetric and
the mean value of the magnetization is still zero. However the two
distributions in the high and low temperature regimes are signifi-
cantly different. In particular, since the exponent in Eq. (10.61) is
an extensive quantity (proportional to N), in the limit N → ∞, the
probability distribution P (m,T,N) in the magnetization per spin
m, tends to the sum of two delta functions for T < Tc

lim
N→∞

P (m,T,N) =
1

2
[δ(m−m(T )) + δ(m+m(T ))], (10.64)

and to a single delta function for T > Tc

lim
N→∞

P (m,T,N) = δ(m). (10.65)

When we add a magnetic field, the free energy f(m,H, T ) ≡
f0(m,T ) − Hm for high temperatures has a minimum for positive
values of m, while for low temperatures the free energy has two
minima, the one at positive m being the lower. Correspondingly, the
probability distribution has two maxima, one higher than the other.
In the limit N → ∞, the distribution gives a δ function that peaks
around a value ofm(H,T ) for high T , while for low T (no matter how
small H is) the distribution approaches a δ function peaked around
the largest maximum and the other relative maximum is suppressed
(for sake of clarity we postpone the demonstration of this to the last
part of this section). For high T the magnetization approaches zero
as H → 0, while for low T the magnetization approaches m(0, T ) >
0, corresponding to one of the maxima of the distribution at H = 0.

Thus the symmetry of the paramagnetic phase is broken (i) be-
cause of the development of two maxima in the probability distribu-
tion P (m,T,N), and (ii) because even a very small field gives rise
to only one δ function in the limit N → ∞.

On the other hand, if N is fixed in the limit H → 0+ , the
distribution does not become an exact δ function. It always contains
a secondary maximum that, although very small for large values of
H, becomes comparable to the primary maximum when H is of the
order of 1/N . Therefore in the limit H → 0 the same two-peaked
distribution as the one found for H = 0 is produced.

This discussion might imply that symmetries can be broken only
in infinite systems. In reality, a macroscopic system with N ∼ 1023

particles, albeit large, is always finite. So how do we provide a
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realistic explanation for the broken symmetry found in systems that
display spontaneous magnetization?

Suppose we take the limit H → 0 for N ∼ 1023 fixed. The
distribution develops two peaks centered at −m and +m; however
the system is trapped for a long time in a state corresponding to
a magnetization m. If we evaluate the time τ in which the system
is trapped, we realize that the system, to pass from the state with
magnetization m to the state with magnetization −m, must pass
through configurations of the phase space that are highly improba-
ble. The dynamical process to go from one configuration to the other
occurs via nucleation of a droplet. The droplet is a compact region
(say a sphere) of dimension R made of overturned spins. The cost
in energy is proportional to the surface of the sphere Rd−1 and the
probability that such event can occur is p ∼ e−Rd−1

. The transition
occurs when the droplet radius becomes of the order of the system
size, R ∼ N1/d, where d is the space dimension. This implies that
the transition probability is p ∼ exp[−N (d−1)/d] and the time for the
transition occurrence τ ∼ p−1 ∼ exp[N (d−1)/d] sec. For N ∼ 1023,
this time is of the order of τ ∼ exp[1015] sec., which is much larger
than the age of the universe.

Thus for measuring time scales that are negligible compared to τ ,
the system exhibits a breakdown of ergodicity; not all phase space
is uniformly visited, and the system exhibits a spontaneous magne-
tization m. Only for unrealistic measurements on time scales larger
than τ will the system exhibit equal probabilities between states −m
and +m and the net magnetization be zero.

In conclusion, for realistic time scales, the system behaves as if
τ = ∞ and as if N = ∞, enabling the spontaneous broken symme-
try to be understood in terms of the partial breaking of ergodicity.
Therefore the ensemble average, which usually gives zero, does not
coincide with the time average, which gives m.

For completeness, we now show what we postponed above, namely
that in the limit N → ∞ the distribution P (m,H, T,N) gives rise to
a δ function peaked in the highest maximum. Dropping the explicit
dependence on the variables H and T , Eq. (10.61) reads

P (m,N) =
e−Nβf(m)∫
e−Nβf(m)dm

. (10.66)

Here we have substituted an integral for the sum. If f(m) has only
one minimum at m (high T ) we can expand f(m) around such a
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minimum

exp[−Nβf(m)] = exp

[
−Nβf(m)− 1

2
Nβλ(m−m)2

]
, (10.67)

where

λ = −
(
∂2f

∂m2

)
m=m

. (10.68)

Therefore, from (10.66),

P (m,N) =
e−(1/2)Nβλ(m−m)2∫
e−(1/2)Nβλ(m−m)2dm

, (10.69)

which in the limit N → ∞ tends to a δ function peaked around m.
If f(m) has two minima at m1 and m2 with f(m2) > f(m1) we can
expand around the two minima and write

exp[−Nβf(m)] = exp

[
−Nβf(m1)−

N

2
βλ1(m−m1)

2

]
+

+ exp

[
−Nβf(m2)−

N

2
βλ2(m−m2)

2

]
, (10.70)

with

λi =

∣∣∣∣∣
(
∂2f

∂m2

)
m=mi

∣∣∣∣∣ ; i = 1, 2. (10.71)

Using (10.70), we can evaluate the integral∫
e−Nβf(m)dm =

√
π

Nβλ1
e−Nβf(m1) +

√
π

Nβλ2
e−Nβf(m2). (10.72)

Since f(m1) < f(m2), in the limit N → ∞ the second term can
be neglected. From (10.66), (10.70) and (10.72)

P (m,N) =

√
Nβλ1√
π

(
e−(1/2)Nβλ1(m−m1)2+

+ e−Nβ[f(m2)−f(m1)]e−(1/2)Nβλ2(m−m2)2
)
. (10.73)

In the limit N → ∞, the second term can be neglected and the
distribution tends to a δ function centered at m1.
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10.9 Fluctuation-Dissipation theorem

We are now interested in the behavior of the correlation function

g(r) = ⟨SiSj⟩ − ⟨Si⟩⟨Sj⟩. (10.74)

Due to space homogeneity and isotropy this quantity depends only
on the distance r between i and j. We also introduce the (local)
susceptibility

χ(r) =
δ⟨Si⟩
δHj

∣∣∣∣
H=0

(10.75)

describing the effect of a magnetic field Hj = H present only on site
j on the magnetization of a spin in i.

The two quantities g and χ are not independent. In order to see
this, let us compute the latter in a canonical setting, as

χ(r) =
δ

δH
Z−1

∑
{Sk}

Sie
−β[H0−HSj ]

∣∣∣∣∣∣
H=0

, (10.76)

where H0 is the Hamiltonian in the absence of Hj (for instance, but
not necessarily, the one in Eq. (10.37)). One has

χ(r) = Z−2β

Z∑
{Sk}

SiSje
−βH0 −

∑
{Sk}

Sie
−βH0 ·

∑
{Sk}

Sje
−βH0


(10.77)

Hence one arrives at
χ(r) = βg(r) (10.78)

This fundamental relation is the Fluctuation-Dissipation theorem. It
relates the response of the system to an external parameter, or per-
turbation, to the correlations which are present in the system when
the perturbation is not present (notice, in fact, that the averages in
Eq. (10.77) are taken with respect to the Hamiltonian H0).

One might ask which is the relation between the (local) suscepti-
bility introduced in Eq. (10.75) and the one (χ = ∂m/∂H, with H
a constant magnetic field) considered before. In order to see this we
can repeat the calculation done before, which now reads

χ =
δ

δH
Z−1

∑
{Sk}

Sie
−β[H0−H

∑
j Sj ]

∣∣∣∣∣∣
H=0

. (10.79)
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Proceeding analogously one obtains

χ =
∑
r⃗

g(r) = g̃(k = 0), (10.80)

where g̃(k), the so called structure factor is the Fourier transform
of g(r). This is the Fluctuation-Dissipation theorem for the global
quantities. Notice that Eq. (10.80) implies also that

χ =
∑
r⃗

χ(r). (10.81)

In other words, if an uniform field H is applied on all the sites of the
system, the global response of the system is the sum of all the local
responses.

10.10 Mean-Field Theories

Mean-field theories offer a very simple and powerful theory of phase
transitions requiring minimal assumptions.

10.10.1 Landau’s Theory

We have shown how the partition function can be written for an
Ising model,

Z =

∫
e−βNf(m,H,T )dm, (10.82)

where f(m,H, T ) = f0(m,T )−Hm is the free energy density, which
has the symmetry property f0(m,T ) = f0(−m,T ). The partition
function of any system that has the same symmetry properties can
be written in the form (10.82), so what follows is rather general.

The idea is that close to the critical point the magnetization is
small. This allows us, if we assume that the free energy is analytic,
to develop the free energy f for small values of m and to stop at the
4-th order,

f̃(m,H, T ) = f(0, H, T ) + a(T )m2 + b(T )m4 −Hm, (10.83)

where we have used the fact that, since f(m,T ) is even in m, only
even powers enter into the expansion. a(T ) and b(T ) are the coeffi-
cients of the expansion and are functions of the temperature. If we
assume that a(T ) becomes zero for some temperature T = Tc (which
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we will see corresponds to the critical temperature) and that a(T )
and b(T ) are analytic close to Tc, we can write the lowest order in
T − Tc

a(T ) = a0(T − Tc) , b(T ) = b0, (10.84)

with a0 and b0 constants that we assume to be positive. Inserting
these values in (10.83), and plotting the free energy f as a function
of m, we find one minimum for T > Tc and two minima for T < Tc,
as in Fig. 10.5. The minimum of the free energy gives the average
value of m. From (10.83), equating the first derivative to zero gives

m[2a0(T − Tc) + 4b0m
2] = H, (10.85)

which represents the equation of state relating H,m, and T . For
H = 0, (10.85) gives

m =

{
0 if T > Tc

±
√

1
2
a0
b0
(Tc − T ) if T < Tc

. (10.86)

There is also a solution m = 0 for T < Tc, but it corresponds to a
maximum. Therefore the magnetization approaches zero at Tc, the
critical temperature, with a critical exponent β = 1/2.

The susceptibility χT = (∂m/∂H)T can also be calculated from
the equation of state (10.85)

χ−1
T =

(
∂H

∂m

)
T

= 2a0(T − Tc) + 12b0m
2, (10.87)

wherem is also obtained from the equation of state. In the particular
case H = 0, substituting the solution (10.86) for m one has

χT =

{
[2a0(T − Tc)]

−1 if T > Tc
[8a0(Tc − T )]−1 if T > Tc

, (10.88)

which predicts a critical exponent γ = 1. Note that the critical
exponents above and below Tc are equal. Further, we see that the
critical amplitudes (see Eq. (10.25) B+ = 4B−.

The specific heat CH can easily be calculated from the free energy
as CH = ∂E/∂T = −β−1∂2F/∂T 2. The result for H = 0 gives a
jump CH(T

+
c )− CH(T

−
c ) = kTca

2
0/(2b0) with exponents α = α′ = 0.

Finally, Eq. (10.85) provides m(Tc, H) ∝ H1/3, and hence δ = 3.
In conclusion, Landau’s theory is a rather general theory based

on symmetry considerations and on the assumption of analyticity



CHAPTER 10. STRONGLY INTERACTING SYSTEMS AND CRITICAL PHENOMENA136

in the order parameter of the free energy. It does not start from
a specific Hamiltonian, so the parameters a0 , b0 , and Tc are not
obtained within the theory and will depend on the particular system
under consideration. On the other hand, the exponents of this par-
ticular model are universal and independent provided that the free
energy is expanded to fourth order in the order parameter. Although
we assume the free energy to be analytic in the order parameter, it
does lead to quantities e.g. magnetization, susceptibility, and spe-
cific heat that are not analytic in T . We will see that the critical
exponents of the Landau theory are not quite in agreement with
most experimental data. The reason is that the basic assumption
of the analyticity of the free energy, although it gives qualitatively
the known experimental results, is not quite correct. This warns us
that it is important in every physical problem to assume analyticity
in the right quantities. To find the right results we have to search
for analyticity in other quantities. We will do this later, within the
framework of the renormalization group, a theory that goes beyond
mean-field calculation.

10.10.2 Weiss Theory

The Weiss approximation is a theory that predicts the same critical
exponents as those found in Landau’s theory of critical phenomena.
However, it starts with a microscopic Hamiltonian and calculates the
free energy and other quantities of interest by introducing an approx-
imation in which each spin feels the effect of the others through a
mean field, whose strength is calculated self-consistently. The Weiss
approach is similar in spirit to the Hartree-Fock theory in solid state
physics in which a system of N interacting electrons is approximated
by N independent electrons, each in a self- consistent field due to
the presence of the other N − 1 electrons.

We apply the Weiss theory to the Ising model in a field

H = −J
∑
⟨ij⟩

SiSj −H
∑
i

Si = −
∑
i

HiSi. (10.89)

The quantity

Hi = H + J
∑
⟨j⟩i

Sj (10.90)

where ⟨j⟩i denote the nearest neighbors of i, is the so calledmolecular
field, or Weiss field, and represents the effective field felt by Si. By
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adding and and subtracting to each spin the average magnetization
m ≡ ⟨Si⟩, which does not depend on i due to space homogeneity
(because the Hamiltonian is invariant under (discrete) translations)
the Hamiltonian (10.89) can be cast as

H = −Heff

∑
i

Si +
Jm2Nz

2
− J

∑
⟨ij⟩

(Si −m)(Sj −m), (10.91)

where z is the coordination number, i.e. the number of nearest-
neighbor spins of spin i, and

Heff = H + Jzm. (10.92)

The key idea of the Weiss theory is to neglect the fluctuations of the
variable Sj. Then, dropping the last term in Eq. (10.91) one has the
mean-field approximation

H ≃ Heff = −Heff

∑
i

Si +
Jm2Nz

2
(10.93)

Notice that Heff = ⟨Hi⟩. Then the mean-field approximation has
replaced the original Hamiltonian (10.89) of N interacting spins by
a new Hamiltonian Heff (10.93) of N independent spins interacting
with an effective external field Heff that depends on m, which must
be self-consistently calculated. Since the last term is a constant it
does not influence the computation of average quantities (it cancels
out). Hence the problem is formally identical to the one considered
in Sec. 7.12, and we can borrow the result obtained there

m = tanh(βHeff ) = tanh[β(Jzm+H)]. (10.94)

For H = 0 this is a transcendental equation that can be solved
graphically by plotting the left-hand side and right-hand side as a
function of m for each value of β. The intersection of the two curves
gives the solution. The first term y = m is a straight line with a
slope 1. The second curve y = tanh(βJzm) has at the origin a slope

dy

dm

∣∣∣∣
m=0

= βJz. (10.95)

If the slope is βJz < 1 (high temperature), m = 0 is the only
solution. When the slope is βJz > 1 (low temperature), solutions
can be m = 0 and m = ±m. The solution m = 0 corresponds
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to a maximum in the free energy and is unstable. The other two
correspond to minima at m = ±m, where m goes to zero at the
value βcJz = 1, corresponding to the critical temperature

kBTc = Jz. (10.96)

The partition function is

Z =

[
e−

βJzm2

2

∑
Si

e−βHeffSi

]N
=

[
2 e−

βJzm2

2 cosh(βHeff )

]N
,

(10.97)
from which the free energy (per spin) f = −kBTN−1 lnZ reads

f =
Jzm2

2
− kBT ln [cosh(βJzm)]− kBT ln 2. (10.98)

We want now to establish a relation with the Landau’s theory. In
order to do this, we consider the region with small m and expand the
free energy up to fourth order in m (we neglect the last irrelevant
constant term on the r.h.s. of Eq. (10.98))

f ≃ Jzm2

2
− kBT ln

[
1 +

1

2
(βJzm)2 +

1

4!
(βJzm)4

]
≃ Jzm2

2
− kBT

[
1

2
(βJzm)2 +

1

4!
(βJzm)4 − 1

2

(
1

2
(βJzm)2

)2
]

=
Jz

2
(1− βJz)m2 +

kBT

12
(βJzm)4, (10.99)

or
f = a0(T − Tc)m

2 + b0m
4 (10.100)

with

a0 =
Jz

2Tc
and b0 =

(Jz)4

12(kBTc)3
. (10.101)

Eq. (10.100) is the same expression found in Landau’s theory for the
free energy density, but now the coefficients are explicitly known.
Consistent with Landau’s theory, a(T ) is zero at Tc = Jz/kB. The
critical exponents are therefore the same as in the Landau theory.
Needless to say, these exponent could be easily derived within the
present theory (without mapping it on Landau’s theory). For in-
stance β is easily derived from Eq. (10.94) by expanding tanh x to
order x3

m ≃ βJzm− 1

3
(βJzm)3 (10.102)
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yielding

m2 ≃ 3
Tc − T

Tc
(10.103)

and hence β = 1/2. In the presence of the external field, expanding
again Eq. (10.94) one has

m ≃ βJzm+ βH − 1

3
(βJzm+ βH)3. (10.104)

At T = Tc this equation reads

m ≃ m+ βcH − 1

3
(m+ βcH)3 (10.105)

where we have used Eq. (10.96). Let us make the ansatz (to be
verified shortly by consistency) that m ∝ H1/δ with δ > 1. Then
we can neglect the term proportional to H in the cubic term on the
r.h.s. of Eq. (10.104), thus obtaining

m = m+ βcH − 1

3
m3 (10.106)

leading immediately to δ = 3. Upon deriving Eq. (10.104) with
respect to H and letting H = 0, for the spin susceptibility one has

χ = βJzχ+ β − (βJzm)2(βJzχ+ β). (10.107)

For T > Tc, letting m = 0 one has

χ ≃ βc

(
T − Tc
Tc

)−1

(10.108)

yielding γ = 1. The same result applies also for T < Tc. Indeed
one sees that in this case the last term in Eq. (10.107) contributes
only with a constant as T → Tc and does not change the exponent
γ. Finally, in order to determine the specific heat exponent let us
evaluate the energy ⟨E⟩ = −∂ lnZ

∂β
. Using Eq. (10.97) for lnZ one

has

⟨E⟩ = Jzm2

2
+βJzm

∂m

∂β
−Jz tanh(βJzm)

(
m+ β

∂m

∂β

)
= −Jzm

2

2
.

(10.109)
Considering the specific heat C = N−1∂E/∂T , from Eq. (10.109),
letting m = A−(Tc − T ) below Tc one finds

C ≃
{

0 , T > Tc
JzA2

−
2

, T < Tc.
(10.110)
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Hence the specific heat has a jump but not a singularity, and α = 0.
We show now that the mean-field theory becomes exact for a sys-

tem where the interaction is not restricted to the neighbours but any
spin interact equally with all the others with strength J/N (normal-
ization with N amounts to a redefinition of J when interaction is
limited to neighbouring spins but is necessary to keep the global in-
teraction strength finite when the interaction range goes to infinity).
In this case Eq. (10.89) applies with

Hi = H +
J

N

∑
j ̸=i

Sj (10.111)

where, at variance with Eq. (10.90), the sum is extended to all the
spins except the one in i. The molecular field in this case can be
written as

Hi = H +
J

N

(∑
j

Sj − Si

)
= H + J (m− Si/N) ≃ H + Jm,

(10.112)
where the last equality holds in the thermodynamic limit in which
N → ∞. This is the form (10.92) of Heff used in the mean-field
approach. This shows that mean-field is exact for systems with an
interaction strength that does not decay with distance. It can be
shown that mean-field is also appropriate for systems where interac-
tions decay sufficiently slowly (i.e. algebraically with a sufficiently
small negative exponent) with distance.

There are many way to improve the Weiss mean-field result for a
system with a finite interaction range. One way is to consider a cell
made of one spin interacting with its z neighbors and an external
field acting on the z neighbors as a result of the interaction due to
all other spins. Increasingly better approximations can be obtained
by taking larger and larger cells, within which the problem can be
solved exactly and treating the remaining spins as a self-consistent
field. In the limit of an infinite cell, one can expect to have solved
the problem exactly. For a finite cell, even though such quantities as
magnetization and susceptibility approach the correct results over a
large temperature range, in the vicinity of the critical point there is
always a mean-field behavior characterized by Landau’s exponents.

Correct critical exponents are not found because solving the prob-
lem exactly in a finite cell implies summing up a finite number of
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degrees of freedom, which in turn implies analyticity in the free en-
ergy and thus in Landau’s critical exponents. In other words, at
temperatures away from the critical point the correlation length is
finite. The system is made of cells with a size of the order of ξ that
do not interact with each other. Therefore if we sum over a finite
number of degrees of freedom inside a cell, we will get correct results.
As T → Tc however, the correlation length becomes infinite and any
approximation involving the sum over a finite number of degrees of
freedom cannot give the correct critical exponents.

10.10.3 Bragg-Williams Theory

10.10.4 The Van der Waals Theory as a mean field theory

The partition function of a real gas is

Z(T, V,N) =

∫
dp⃗1 . . . dp⃗Ne

−β
∑

i

p2i
2m

∫
dr⃗1 . . . dr⃗Ne

−β
∑

ij V (|rij |),

(10.113)
where rij = |r⃗i − r⃗j| is the distance between particles i and j. As
it is the partition function (10.113) cannot be evaluated (in general)
because of the interaction term V . Then, in order to proceed, we
introduce a mean field approximation by saying that each particle i
feels an effective potential U(r⃗i) due to the presence of all the other
particles. We also assume that U(r⃗i) has the simple form

U(r⃗i) = U(ri) =

{
∞ r < r0
u < 0 r ≥ r0,

(10.114)

namely there is an hard-core repulsion for small distances r < r0
and a costant attraction otherways. We also make the reasonable
assumption that u is proportional to the density u = −cρ, where c
is a positive constant, which we can write as

u = −a n2

NV
, (10.115)

where n is the number of moles and a = cN2
A, NA being the Avogadro

number. Plugging the form (10.114) into Eq. (10.113) one has

Z(T, V,N) =

[
λ

∫
dr⃗ie

−βU(ri)

]N
, (10.116)
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where λ is the value of the momentum integration which does not
depend on V . Using Eq. (10.114) one has

Z(T, V,N) =
[
λ (V − Ve)e

−βu)
]N
, (10.117)

where Ve =
∫
ri<r0

dr⃗i is the excluded volume. This quantity is propor-
tional to the number of particles, Ve = CN , where C is a constant,
so we can write

Ve = bn, (10.118)

where b = CNA. Computing the pressure as p = − ∂F
∂V

∣∣
T
= kBT

∂ lnZ
∂V

∣∣
T

one has

p =
NkBT

V − nb
− an2

V 2
, (10.119)

which is the Van der Waals Equation (10.14) (recall that NkB =
nR). This shows that the Van der Waals approach is a mean-field
theory.

10.10.5 Correlation functions

Landau’s theory describe the system directly in term of the macro-
variable m and therefore, in the form of Sec. 10.10.1, it does not
allow one to study correlations which are produced by the fluctua-
tions of the micro-variables Si. We then try to upgrade the theory
by writing a Landau free energy of the form

F (T,H) =

∫
dr⃗
[
a(T )ϕ2(r⃗) + b(T )ϕ4 −H(r⃗)ϕ(r⃗) + c(T )|∇⃗ϕ(r⃗)|2

]
,

(10.120)
where ϕ(r⃗) is a field with the meaning of the magnetization at po-
sition r⃗, i.e.

∫
dr⃗ϕ(r⃗) = m. By assuming ϕ(r⃗) = m = const.,

Eq. (10.120) reduces to the Landau’s free energy introduced in Sec.
10.10.1. Eq. (10.120), therefore, represents a generalization to the
case in which there is a spatially varying magnetization. Notice that,
in this case, the last term represent the lowest order term compatible
with the required symmetry for ϕ → −ϕ for H = 0 in a gradient
expansion. As explained in Sec. 10.10.1, to lowest order one assumes
a(T ) = a0(T − Tc), b(T ) = b0 and, analogously, c(T ) = c0. It can be
shown that the free energy (10.120) provides the correct description
of the critical properties (e.g. it gives the correct critical exponents).
However this theory is not analytically solvable.
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We now minimize the free energy

δF (T,H)

∂ϕ(x⃗)
= 2a(T )ϕ(x⃗) + 4b0ϕ

3(x⃗)−H(x⃗)− 2c0∇2ϕ(x⃗) = 0.

(10.121)
To obtain the last term we have used

∂

∂ϕ(x⃗)

∫
dr⃗ |∇⃗ϕ(r⃗)|2 = 2

∫
dr⃗ ∇⃗ϕ(r⃗) · ∇⃗δ(x⃗− r⃗) (10.122)

= −2

∫
dr⃗ [∇⃗ · ∇⃗ϕ(r⃗)] · δ(x⃗− r⃗) + [∇⃗ · ϕ(r⃗)]δ(x⃗− r⃗)

∣∣∣
Border

,

and neglected the border term which is located at infinity (if this
is not sufficiently clear one can try to do the computation first in
one dimension, and, as a second step, to perform the computation
in arbitrary dimension by introducing the components). In order to
obtain the susceptibility of Eq. (10.75) we derive Eq. (10.121) with
respect to H(y⃗) obtaining

2a(T )χ(r) + 12b0ϕ
2(x⃗)χ(r)− δ(r⃗)− 2c0∇2χ(r) = 0 (10.123)

Since this equation cannot be solved, in order to be able to proceed,
we resort to a mean-field-like approximation in which we substitute
ϕ2(x⃗) with ⟨ϕ2(x⃗)⟩ = S, which does not depend on space due to
homogeneity. Going to Fourier space one arrives at

[2a(T ) + 12b0S + 2c0k
2]χ̃(k) = 1. (10.124)

Hence, using the Fluctuation-Dissipation theorem (10.78) one has

g̃(k) =
kT

2c0

ξ2

k2ξ2 + 1
, (10.125)

where
ξ =

√
2c0 [2a(T ) + 12b0S]

− 1
2 . (10.126)

Since this quantity has the dimension of a length and there are
no other lengths present in expression (10.125), ξ is the coherence
length. Indeed we will show below that C(r) decays over a typical
distance r ∼ ξ. Using the form (10.84) of a(T ) one has

ξ = ξ0

(
|T − Tc|
Tc

)−ν

(10.127)
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with the critical exponent ν = 1/2 and

ξ0 =


(

c0
a0Tc

)1/2
, T > Tc(

c0
4a0Tc

)1/2
, T < Tc

(10.128)

Eq. (10.125) is known as the Ornstein-Zernike form of the correla-
tion. It states that

g̃(k) ∼ k−(2−η) (10.129)

for kξ ≫ 1, with the critical exponent η = 0. Transforming Eq.
(10.129) back to real space one obtains

g(r) =
kT

2c0
r−(d−2+η)Y

(
r

ξ

)
, (10.130)

where, in d = 3, it is
Y (z) ∝ e−z. (10.131)

This shows that ξ is the typical length over which C(r) decays.

10.10.6 Ornstein-Zernike Theory

The mean-field version that we have treated thus far has allowed the
calculation of such quantities as order parameter, susceptibility, and
specific heat. These quantities do not depend on coordinates. Now
we want to apply a mean-field theory to the pair-correlation function
originally proposed by Ornstein and Zernike. As in Landau’s theory,
we start with a generic system and assume that some quantity we
define has analyticity.

To fix the ideas, we consider the density-density pair correlation
function g(r⃗) for a fluid, but the procedure will also be valid for spin
systems. Remember that g(r⃗) measures the correlation between two
points at a distance r⃗, i.e., it quantifies the effect that one density
fluctuation at a given point has on the density fluctuation at another
point separated by a distance r⃗. The range within which the effect
is felt, i.e., the range within which g(r⃗) = 0, is called the correla-
tion length ξ and has been precisely defined in Eq. (10.6). Thus,
near the critical point, g(r⃗) develops long-range correlation. In fact,∫
g(r⃗)dr⃗, which is proportional to the compressibility, diverges at

the critical point. Therefore if we consider the Fourier transform,

g̃(k⃗) =
∫
g(r)ek⃗·r⃗dr⃗, for k = 0, g̃(0) =

∫
g(r⃗)dr⃗ diverges at Tc.
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Therefore g̃(k⃗) is not an analytic function at T = Tc and k = 0. We

can never develop a theory that assumes g̃(k⃗) is an analytic func-
tion, and thus this cannot help us to find the desired divergence,
even qualitatively.

We introduce another quantity, the direct pair correlation func-
tion, which is defined by

g(r⃗) ≡ C(r⃗) +

∫
C(r⃗ − r⃗′)g(r⃗′)dr⃗′. (10.132)

Taking the Fourier transform of (10.132), we have

g̃(k⃗) = C̃(k⃗) + C̃(k⃗)g̃(k⃗), (10.133)

from which

C̃(k⃗) =
g̃(k⃗)

1 + g̃(k⃗)
. (10.134)

So given the pair correlation function g̃(k⃗), the direct pair correlation

function C̃(k⃗) is uniquely defined by (10.134). From (10.133) we can

also express g̃(k⃗) as a function of C̃(k⃗),

g̃(k⃗) =
C̃(k⃗)

1− C̃(k⃗)
. (10.135)

From (10.135) we note that if C̃(0) at Tc equals 1, g̃(0) diverges and

k = 0. Therefore C̃(k⃗) can be a well-behaved function at T = Tc,

even if g̃(k⃗) is not.

Before we proceed to the evaluation of g̃(k⃗), we give a physical
interpretation to the direct pair correlation function C(r⃗). From
(10.132) we can perturbatively solve the integral equation as

g(r⃗) = C(r⃗)+

∫
C(r⃗1)C(r⃗−r⃗1)dr⃗1+

∫
C(r⃗1)C(r⃗2−r⃗1)C(r⃗−r⃗2)dr⃗2dr⃗1+. . . .

(10.136)
Graphically, this series can be expressed as ...

The first term C(r⃗) can be interpreted as the contribution to g(r⃗)
from the direct correlation, and the second term as the contribution
to g(r⃗) from the product of two direct correlations, i.e., the two

points 0⃗, r are correlated by a direct correlation that propagates
from 0⃗ to an intermediate point r⃗1 and from r⃗1 to r⃗2, and so on.
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Thus although C(r⃗) is short-range, this propagation mechanism can
give rise to long-range correlations.

We now proceed as in the Landau theory and expand C̃(k⃗) as a
power of k2 (since g(r⃗) is a function of the modulus of |r⃗|, the first
term is in k2). Assume that we are at fixed density ρ = ρc and
T > Tc. Our concern is the behavior at large r, so we stop at the
first order in k2,

C̃(k⃗, T ) = C̃(0, T ) +B(T )k2 + . . . , (10.137)

From (10.135) it follows at Tc that C̃(0, Tc) = 1. We assume analyt-
icity near Tc, so

C̃(0, T ) = 1 + A0(T − Tc) and B(T ) = B0. (10.138)

For simplicity, we have assumed T to be above the critical temper-
ature along the line where the order parameter is 0 (ρL = ρG = ρc
for a fluid); we could otherwise include a dependence on the order
parameter M which would contribute a term proportional to M2 in
(10.138).

In conclusion, from (10.135), (10.137), and (10.138) we can write
to the lowest order in k2 and T − Tc,

g̃(k⃗, T ) =
D

ξ−2 + k2
, (10.139)

where

D = −B−1
0 , ξ−2 = ξ−2

0

T − Tc
Tc

, and ξ−2
0 = TcA0D.

(10.140)
For k = 0, we have

g̃(0, T ) =
1

A0(T − Tc)
. (10.141)

Since g̃(0, T ) is the square of the density fluctuation, it must be pos-
itive. Therefore A0 > 0. From (10.141) we also find the compress-
ibility diverges with an exponent γ = 1, as found in the Landau
theory.

Since the only divergence of g̃(k⃗, T ) is at k = 0, B0 also is negative.
The form of (10.139), which is called a Lorentzian, is valid near

T = Tc and when k⃗ is small. By performing a Fourier transform
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(10.139), we obtain g(r⃗) for large values of r

g(r⃗) ∝ e−r/ξ

rd−2
, (10.142)

where d is the space dimension.
From (10.142), it follows that ξ coincides with the correlation

length of (10.141), for which

ξ ≃ ξ0

(
T − Tc
Tc

)−ν

, (10.143)

with an exponent ν = 1/2. For T > Tc, therefore, the pair correla-
tion function for large r decays exponentially while at Tc it decays
algebraically,

g(r⃗) =
1

rd−2+ν
, (10.144)

with ν = 0.
As stated earlier, the Ornstein-Zernike theory does not begin with

a particular model. It only assumes the analyticity of C̃(k⃗, T ) near
T = Tc and k = 0. As in the Landau theory, Tc and the amplitudes
of the divergences are not determined, and will depend on the par-
ticular model considered. The critical exponents are universal and
will be valid for any model that satisfies the analyticity requirement

for C̃(k⃗, T ). To perform an explicit calculation including Tc and the

amplitudes, we can calculate C̃(k⃗, T ). This can be done starting
from definition (10.134). By doing a series expansion in β, to the
first order, it is possible to show (see Problem) that

C̃(k⃗) =
Ṽ (k⃗)

kT
, (10.145)

where

Ṽ (k⃗) =

∫
V (r⃗)eik⃗·r⃗dr⃗, (10.146)

and V (r⃗) is the interacting potential. This result is also valid for the
Ising model or lattice gas model, except that the discrete sum must
be used instead of the integral over all lattice sites in (10.146). The
critical temperature is therefore given by condition (10.139)

Ṽ (0)

kTc
= 1. (10.147)
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In the case of the Ising model Ṽ (0) = zJ , which gives the Weiss
result kBTc = zJ . Other quantitites such as ξ can be obtained by
calculating (10.146) to the order k2.

10.10.7 Summary on mean-field critical exponents

In conclusion, the mean-field theory predicts for fluids and magnets
the following behaviors and critical exponents:

M ∼ ϵβ β = 1/2 Order parameter
χ ∼ ϵ−γ γ = 1 Compressibility or susceptibility
C ∼ ϵ−α α = 0 Spec. heat at const. volume or field
g(r) ∼ e−r/ξ/rd−2+ν ν = 0 Pair correlation function
ξ ∼ ϵ−ν ν = 1/2 Correlation length
M ∼ H1/δ δ = 1/3 Order parameter at Tc

Note the unphysical prediction that for d = 1 and d = 2 the pair
correlation function will not decay, and for d = 1 will increase with
distance. This defect arises from the fact that the mean-field theory
is based on an assumption of analyticity, which is not necessarily
correct.

10.10.8 Mean-field breakdown: The Ginzburg criterion

As we have already pointed out, mean field theories provides in many
cases a qualitatively correct description of phase-transitions but their
quantitative predictions are wrong. It is known, for instance, that
the mean-field critical exponents do not agree with the real critical
ones observed in experiments or in the few exactly soluble cases (See
Sec. 10.11 and table 10.1 specifically). This happens because the
mean-field does not take into account appropriately the ever growing
fluctuations that set in the system, as testified by the divergence of
the susceptibility, as the critical point is approached. Consequently,
the mean field picture is expected to get worst approaching Tc. Inter-
estingly, the breakdown of mean field can be consistently predicted
within the mean-field theory, as we show below.

Translating the discussion above into a formula, we can assume
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that, below Tc, the following inequality⟨∑
i∈Vξ

(Si − ⟨Si⟩)

2⟩
≪

⟨∑
i∈Vξ

Si

⟩2

, (10.148)

must hold in order for mean field to be valid. Eq. (10.148) indeed
states that mean field is correct when the spin fluctuations are much
smaller than the spin average. Notice that we have restricted the
calculation inside a correlated volume Vξ because, since correlations
are felt only up to distances ξ, the system can be thought as made
of many independent subsystems of volume Vξ. We can re-write the
r.h.s. of Eq. (10.148) as⟨∑

i∈Vξ

(Si − ⟨Si⟩)

2⟩
=

⟨∑
i∈Vξ

∑
j∈Vξ

(Si − ⟨Si⟩) (Sj − ⟨Sj⟩

⟩
=

∑
ij∈Vξ

g(r) =
∑
i∈Vξ

∑
r⃗

r<ξ

g(r), (10.149)

where in the last sum we sum only up to r ≃ ξ. Using Landau’s
theory (Eq. (10.130)) one has∑

i∈Vξ

∑
r⃗

r<ξ

g(r) ≃
∫
Vξ

dx⃗

∫
r<ξ

dr⃗ g(r)

= Vξ
kT

2c0

∫
r<ξ

dr⃗|r|−(d−2)Y

(
r

ξ

)
= Ad

kT

2c0
ξd+2, (10.150)

where in the last passage we have transformed the integration vari-
able into r⃗/ξ and the result of the integration is contained in the
d-dependent constant Ad. Plugging this result into Eq. (10.148)
and writing the r.h.s. using again Landau’s theory as⟨∑

i

Si

⟩2

= B2
dξ

2da(T )

2b0
, (10.151)

where Bd is the volume of a system of unitary size in dimension d,
upon expressing all the quantities in terms of ξ0 (Eq.(10.128)), one
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arrives at (
ξ

ξ0

)d−4

≡
(
|T − Tc|
Tc

) 4−d
2

≫ Cdξ
−d
0 , (10.152)

where Cd = AdkTb0/(2B
2
da0Tc) is a constant. This equation is known

as the Ginzburg criterion. Although we have shown it for T < Tc,
one can arrive to a similar result also for T > Tc. This equation
shows that for d ≥ 4 the mean field theory is basically correct as
Tc is approached, while it fails for d < 4. The special dimension
dc = 4, above which mean field breaks down, is called the upper
critical dimension and is a general concept when dealing with phase-
transition in general (not only those described by the Ising model).
Eq. (10.152) informs us also on how far from Tc one must be in order
to have the mean field being basically correct. Notice that mean field
is more accurate in systems with a large bare correlation ξ0, such as
systems with long-range interactions, superconductors etc...)

10.11 Exactly Solvable Models

10.11.1 The One-Dimensional Ising Model

The one-dimensional Ising model is exactly soluble. In the zero field
it has Hamiltonian

H = −J
N∑
i=1

SiSi+1, (10.153)

where now we consider periodic boundary conditions SN+1 = S1.
The partition function can be written as

Z =
∑
{Si}

N∏
i=1

eKSiSi+1 , (10.154)
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where K ≡ βJ . Using the identity eKSiSi+1 = cosh(KSiSi+1) +
sinh(KSiSi+1) we have

Z =
∑
{Si}

N∏
i=1

cosh(KSiSi+1)[1 + tanh(KSiSi+1)]

= [coshK]N
∑
{Si}

N∏
i=1

[1 + SiSi+1 tanhK] (10.155)

= [coshK]N

∑
{Si}

[1 +
∑
i

SiSi+1 tanhK +
∑
i

∑
j

SiSi+1SjSj+1 tanh
2K + . . . ]

 ,
where we have used the fact that SiSi+1 = ±1 and the parity of the
hyperbolic functions. Since the sum is over all values of spins, all
the terms except the first (i.e. 1) are zero; therefore

Z = 2N [coshK]N . (10.156)

The free energy density is

f(K) = −kT lnZ

N
= −kT (ln 2 + ln coshK). (10.157)

The extension to the presence of a magnetic field H gives (see prob-
lem)

f(K,h) = −β−1
{
K + ln{coshh+ [sinh2 h+ e−4K ]1/2}

}
, (10.158)

where h ≡ βH. The magnetization can be easily calculated by taking
the derivative of the free energy with respect to H (see problem).
The result shows that the magnetization is always zero for any finite
temperture except at T = 0.

We now calculate the pair correlation function

gij ≡ ⟨SiSj⟩. (10.159)

Since the magnetization ⟨si⟩ = 0, we do not need to subtract the
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term ⟨Si⟩⟨Sj⟩, and

gij =
1

Z

∑
{Si}

SiSje
K

∑
ℓ SℓSℓ+1 (10.160)

=
1

Z
[coshK]N

∑
{Si}

SiSj

N∏
ℓ=1

(1 + SℓSℓ+1 tanhK)

=
1

Z
[coshK]N

∑
{Si}

SiSj[1 +
∑
ℓ

SℓSℓ+1 tanhK

+
∑
ℓ

∑
m

SℓSℓ+1SmSm+1 tanh
2K + . . . ],

=
1

Z
[coshK]N(tanhK)|i−j|2N

The final result can be obtained by observing that for i = j one has
SiSj ≡ 1 and only the first (the 1) term survives after summing over
the spin configurations, similarly to what done in Eq. (10.155). For
j = i + 1 the only surviving term is the second with ℓ = i, namely
S2
i S

2
i+1 tanhK = tanhK. For j = 1 + 2 there the second term

survives with ℓ = i and m = i + 1, namely S2
i S

2
i+1S

2
i+2 tanh

2K =

tanh2K and so on for any distance |i− j|.
From (10.158) we finally obtain

gij = [tanhK]|i−j|, (10.161)

which can be written in the form

gij = exp

[
−rij
ξ

]
, (10.162)

where rij = a|i− j|, with a being the lattice spacing and

ξ =
a

| ln tanhK|
, (10.163)

which shows that as T → ∞ the correlation reduces to zero, while
as T → 0, the correlation length diverges as

ξ =
a

2
exp

[
2J

kBT

]
. (10.164)

Although the one-dimensional Ising model does not show any spon-
taneous magnetization at finite temperatures, T = 0 can be treated
as a critical point where the correlation length diverges. In 2 and 3
dimensions, there is a transition at finite Tc.
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10.11.2 Onsager solution in d = 2

An exact solution of the Ising model was provided by Onsager in 1944
for the 2-dimensional case in zero external field. He showed that in
the thermodynamic limit, the free energy has a non-analyticity at the
temperature T = Tc = 2.269J/kB. At this temperature, the specific
heat diverges logarthmically, while the spontaneous magnetization
behaves as (T−Tc)β with β = 1/8. The other exponents are γ = 7/4,
ν = 1, and η = 1/4.

10.11.3 Spherical model

10.12 Critical exponents in d = 3

Although there is no exact solution in three dimensions, the critical
exponents can be estimated numerically by means of high-temperature
or low- temperature series expansion, or by Monte Carlo calculations.
We find that the critical exponents for d = 3 are close to, but still
different from the mean-field results (see Table I).

β γ α ν η
2d 1/8 7/4 0 1 1/4
3d 0.313 1.25 0.125 0.64 0.04
MF 1/2 1 0 1/2 0

Table 10.1: Critical exponents.

What about the critical exponents obtained from experimental
data? As might have been anticipated from the lattice gas model,
most critical exponents for both ferromagnets and fluids are numer-
ically close to those of the 3-dimensional Ising model. From Table
10.1 we see that the critical exponents are highly dependent upon
system dimension. In d = 1 there is not even a phase transition at
finite temperatures.

10.13 Paths degeneracy

How can we understand the absence of phase transition in d = 1?
The pair correlation function between two points at a distance of n
lattice spacing is

[tanh βJ ]n = exp[−n ln | tanh(βJ)|]. (10.165)
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Because the correlation decays by a factor tanh(βJ) at each step, the
pair correlation decays exponentially. Examples include the decay
of a radioactive element and the decay of light or sound as it travels
through a medium.

In higher dimensions there is more than one path connecting two
points. We can make a rough estimate of the pair correlation func-
tion. Roughly the number of paths made of n steps between two
points increases as a power of n, i.e., λn = en lnλ , with λ > 1.
On each path the correlation decays exponentially, but the num-
ber of paths increases exponentially. But summing over all the
paths, we obtain roughly the pair correlation gn after n steps, i.e,
gn = [λ tanh(βJ)]n.

When these two effects compensate, the correlation length be-
comes infinite. Therefore the critical temperature is given by

λ tanh

(
J

kBTc

)
= 1 (10.166)

The pair correlation function between two points separated by a
distance r⃗ is related to gn by 4g(r⃗)rd−1dr = g(n)dn. If we assume
that the relation between r and n is

nν = r, (10.167)

we obtain

g(r⃗) = exp

[
−
(
r

ξ

)1/ν
]

1

rd−2+η
, (10.168)

with

η =
2ν − 1

ν
, (10.169)

and

ξ =
1

[lnλ tan(βJ)]ν
∼ (T − Tc)

−ν . (10.170)

Therefore ν corresponds to the correlation length exponent. Finally
we can speculate that the paths along which correlations propagate
are nonintersecting random walks, the so-called self-avoiding walks
(SAWs). The exponent ν, which relates the number of steps n and
the end-to-end distance r, can be known to a good approximation
using a formula derived by Flory, i.e.,

ν =

{
3/(d+ 2) if d ≤ 4
1/2 if d ≥ 4

, (10.171)



CHAPTER 10. STRONGLY INTERACTING SYSTEMS AND CRITICAL PHENOMENA155

which in fact is exact for any d except d = 3. We note that the above
argument becomes exact in one dimension and in higher dimensions.
In this case λ = z, and in the higher dimensions z is large, thus from
(10.166) Tc is large and, if we expand the hyperbolic tangent to first
order,

zJ

kBTc
= 1. (10.172)

From (10.169) and (10.171) we see that when d ≥ 4, ν = 1/2 and
η = 0. This argument suggests that there exists an upper critical
dimensionality dc = 4 such that for d ≥ dc the critical exponents
do not change with the dimensionality and become identical to the
mean-field exponents. This result in fact is true and can be derived
within the renormalization group approach.

10.14 Scaling Laws and Universality

Until the beginning of the 1970s the mean-field theory was the only
theory available for the study of critical phenomena, and there was
no way to improve the theory to give better results for critical ex-
ponents. However, based on general thermodynamical properties, it
was possible to prove some general relations among critical expo-
nents. There are many examples, e.g.,

α + 2β + γ ≥ 2 and dν ≥ 2− α. (10.173)

It was remarkable to note that these relations were always satisfied as
equalities as can be seen in Table I. Even the mean-field exponents
satisfy the first relation as an equality. In fact, all the relations
that do not involve the dimensionality d are also satisfied as an
equality by the mean-field exponents. These relations are called
scaling relations. The relations that involve the dimensionality d are
called hyperscaling relations.

In addition to the scaling, a second property, universality, was
observed. As clearly stated by Kadanoff, this is based on the em-
pirical fact that all systems can be divided into groups, each group
being characterized by the same critical exponents. The reason for
such universal behavior was based on the following arguments: A
system near the critical point is dominated by large scale fluctua-
tions, the linear size being essentially the correlation length ξ. At
these large scales, the details of the interactions are not important
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in determining the critical exponents, i.e., the critical exponents do
not depend on the details of the interactions. For example, an Ising
model with nearest-neighbor interactions and next-nearest-neighbor
interactions will be characterized by the same exponents as the Ising
model with only nearest-neighbor interactions.

The universality classes are therefore only characterized by global
properties, i.e.,

(1) the dimensionality,
(2) the Hamiltonian symmetries, and
(3) the behavior of the interactions for large distances.
Apparently all systems in nature can be divided into a compara-

tively small number of universality classes characterized by the above
global properties. Systems belonging to the same universality class
have not only the same critical exponents but also the same scaled
equation of state.

10.14.1 Homogeneity

Before proceeding on the scaling laws it is useful a short mathemat-
ical digression on homogeneous function. By definition, a function
f(x) is said homogeneous if

f(tx) = g(t)f(x), (10.174)

where t is a parameter, that in the following will be denoted as rescal-
ing parameter, and g a generic function. A function f(x1, x2, . . . , xn)
of n variables is homogeneous if

f(tx1, tx2, . . . , txn) = g(t)f(x1, x2, . . . , xn). (10.175)

A generalized homogeneous function is such that

f(t−ν1x1, t
−ν2x2, . . . , t

−νnxn) = g(t)f(x1, x2, . . . , xn). (10.176)

As we will see soon, scaling relations among critical exponents are a
direct consequence of the fact near the critical point thermodynamic
function are (generalized) homogeneous functions of their arguments.

10.14.2 Scaling

Let us go back to Landau’s theory (in the homogeneous case of Sec.
10.10.1). Introducing the quantity

m∗ =

(
|a(T )|
b0

) 1
2

, (10.177)
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the equation of state (10.85) can be cast as

H

H∗ = 2 sign(t)
m

m∗ + 4
( m
m∗

)3
, (10.178)

where t = (T − Tc)/Tc, and H∗ = b0m
∗3. Hence, in each sector

T > Tc and T < Tc, H = H/H∗ is a function only of the variable
M = m/m∗

H = Ĥ±(M), (10.179)

with Ĥ± = ±2M+4M3. This implies that the equation of state does
not really involves three independent variables (namely m,H, T ) but
only two independent ones H,M. The procedure we have followed
above to re-write the equation of state is in spirit analogous to the
law of corresponding states previously introduced regarding the Van
der Waals theory of the liquid-gas transition. The form (10.179) is
expected to be universal while all the system-dependent features are
hidden into the relations connecting H to H through H∗, M to m
through m∗. Writing Eq. (10.179) as

H(t,m) = |t|
3
2H±

(
m

|t| 12

)
(10.180)

we see that H(T,m) seen as a function of m is a homogeneous func-
tion where t plays the role of the rescaling parameter.

Similar considerations can be done for other thermodynamic quan-
tities. Let us start with the free energy, that we chose in the Landau
form (10.83) (we set the irrelevant constant f(0, H, T ) = 0 for sim-
plicity). This can be re-written as

f(m,H, T )

f ∗ = sign(t)M2 +M4 −HM, (10.181)

with f ∗ = b0m
∗4. Inverting the relation (10.179) to express M in

terms of H we arrive at

f(t,H) = |t|2F±

(
H

|t| 32

)
(10.182)

with F± ∝ sign(t)M2(H) +M4(H)−HM(H).
The homogeneity property expressed by Eqs. (10.180, 10.182) is

referred to as scaling, since the number of independent variables is
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reduced by considering rescaled quantities as H,M. Notice that all
the rescaling quantities m∗, H∗, f ∗ can be expressed as powers of the
reduced temperature t.

According to Eq. (10.130) the correlation function at H = 0 can
be cast in a scaling form as follows

g(r, T ) = |t|(d−2)νG
( r

t−ν

)
, (10.183)

where G = (r/ξ)−(d−2)Y (r/ξ). The physical meaning of Eq. (10.183)
is that one can map two systems at different temperatures T1 and
T2 by measuring (or rescaling) lengths in units of ξ(T ), and also
by measuring the local magnetization, so to say, in units of m∗ =
ξ(T )−(d−2) (since C is the product of two local magnetizations). This
means that as Tc is approached the local magnetization gets weaker
and weaker. This shows that the scaling property is equivalent to
the statement that the physics can be described in terms of a single
dominant length ξ(T ) in the vicinity of Tc (this is not true if we are
far from Tc).

So far we have considered the mean field theory. To proceed
further we make the hypothesis that the scaling property (10.182)
holds also beyond mean field, where in general

f(t,H) = |t|2−αF±
(

H

|t|2−α−β

)
, (10.184)

where α and β are two unknown exponents (but we will soon recog-
nize that they are the specific heat and magnetization exponents, so
we anticipate the use of their symbols). For the correlation function
we generalize the form (10.183) by assuming

g(r, T,H) = |t|(d−2+η)νG
(

r

|t|−ν
,

H

|t|2−α−β

)
, (10.185)

where we have considered also the case with H ̸= 0 and we the
scaling of H with t is the same as in Eq. (10.184).

Notice that the free energy, from which all the thermodynamic
properties can be obtained, is a function of only two exponents.
This implies, as we will see shortly, that all the critical exponents
introduced before are not independent and can be expressed in terms
of α and β. In order identify α and β, let us start with the specific
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heat in zero field

C = N−1∂E

∂T

∣∣∣∣
H=0

= −N−1 ∂

∂T

∂ lnZ

∂β

∣∣∣∣
H=0

=
∂

∂T

∂(βf)

∂β

∣∣∣∣
H=0

= −T ∂2f

∂T 2

∣∣∣∣
H=0

= − T

T 2
c

∂2f

∂|t|2

∣∣∣∣
H=0

= − T

T 2
c

(2− α)(1− α)|t|−αF±(0), (10.186)

which shows that, as anticipated, α is the specific heat exponent.
For the magnetization one has

m(T,H) = − ∂f

∂H

∣∣∣∣
T

= −|t|βF±′
(

H

t2−α−β

)
. (10.187)

Evaluating at H = 0 one finds

m(T,H) = −|t|βF±′
(0), (10.188)

which allows to recognize β as the usual magnetization exponent.
Up to this point we have only identified the exponents contained

in the scaling ansatz (10.184). Now we show that from this ansatz
one can derive a number of scaling relations among critical expo-
nents. To start with, let us compute the susceptibility from Eq.
(10.187) as

χ(T ) =
∂m

∂H

∣∣∣∣
H=0

= −|t|2β+α−2F±′′
(0), (10.189)

from which we obtain the relation

γ = 2− α− 2β. (10.190)

Now we consider the magnetization at Tc, in order to determine the
exponent δ. From Eq. (10.187), in order to have a finite result when

t → 0 it must necessarily be limt→0F±′
(x) ∼ x

β
2−α−β . Hence one

finds m(Tc, H) ∝ H
β

2−α−β , and hence another scaling relation

δβ = 2− α− β. (10.191)

The zero field susceptibility is

χ = β

∫
dr⃗ g(r, T,H = 0) ∝ |t|−(2−η)ν , (10.192)
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from which
γ = (2− η)ν. (10.193)

Finally, assuming that below Tc the correlator gdisc(r, T,H) = ⟨SiSj⟩
takes the same form as g in Eq. (10.185), since limr→∞ gdisc =
⟨Si⟩⟨Sj⟩ = m2, due to the statistical independence of the spins over
lengths r ≫ ξ, we obtain m2 = |t|(d−2+η)νG(∞), from which the last
scaling relation

ν(d− 2 + η) = 2β (10.194)

descends. This latter is an hyperscaling relation, since it contains
spatial dimensionality, and is obeyed by mean field only letting d =
dc = 4. In conclusion, there are six critical exponents and four
scaling relations among them (Eqs. (10.190,10.191,10.193,10.194)),
and hence only two exponents are independent.

10.15 The Renormalization Group

10.15.1 General scheme

The basic idea is that at the critical point, where ξ = ∞, there is no
finite characteristic length. Therefore if we examine the system at
two different length scales we will see statistically the same picture.
For example, if we could observe the critical opalescence of a fluid at
its critical point with a microscope we would see a system made of
droplets of all sizes, and each droplet would contain smaller droplets
exhibiting an identical structure. If we could change the length scale
at which we observe the system by zooming in and observing the
detail of a single droplet, we would see the same picture: a self-
similar stucture made up of smaller droplets inside of larger droplets
and all droplets exhibiting the same configuration. The idea of self-
similar system, a system in which a tiny piece of the system has the
same structure as the entire system, is the basis for the concept of
scaling invariance. The divergence of the coherence length as T → Tc
and the scale-invariant configuration of the system is shown in Fig.
10.6 where the equilibrium configurations of the two-dimensional
Ising model at different temperatures are numerically generated with
a computer. At high temperature (T = 2Tc) the correlation length
is small. Close to Tc large clusters begin to develop and, right at Tc
there are clusters of any size (up to the largest one, i.e. the system
size).



CHAPTER 10. STRONGLY INTERACTING SYSTEMS AND CRITICAL PHENOMENA161

Figure 10.6: Equilibrium configurations of the d = 2 Ising model on a square
lattice obtained by Montecarlo simulations. Black and white regions represent
up and down spins. In the the three panels the temperature is (from top to
bottom) T = 2Tc, T = 1.05Tc and T = Tc.

Let us see how the idea of scale-invariance idea can be imple-
mented to make predictions. To fix the ideas, we consider the Ising
model in a zero external field. Close to Tc the correlation length ξ is
very large. We divide the original system of spins into subsystems
of linear dimension ℓ with a < ℓ < ξ. Within each cell the spins
are within a distance no greater than the correlation length and are
therefore highly correlated. We can imagine that they will all be-
have coherently and that the cell can be roughly in two states: one in
which up-spins are in the majority and one in which down-spins are
in the majority. We can introduce a block variable sα that assumes
two values, up and down, corresponding to these two states. The
majority rule introduced here must not be intended in a strict sense
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but only as a physically-motivated guideline to understand the ba-
sic passages. The correct procedure to introduce the block variables
is that of summation over internal degrees of freedom, that will be
discussed in Sec. 10.15.2. In order to proceed we further suppose
that if the original spin Hamiltonian has the form

−βH = K
∑
⟨ij⟩

SiSj + h
∑
i

Si, (10.195)

with K = J/kBT and h = H/kBT , the system of cells can be de-
scribed by a Hamiltonian H′ with the same form as the original spin
systems, apart from a constant W0(K,h),

−βH′ = K ′
∑
⟨αβ⟩

sαsβ + h′
∑
α

sα +W0(K,h), (10.196)

where the sum is over all nearest-neighbor cells, andK ′ and h′ are the
renormalized coupling constant and the magnetic field, respectively.
Let us denote with ξ(K,h) and with ξ(K ′, h′) the value of a certain
length (we use this letter since we will be interested in the coherence
length) before and after the block transformation. Since the distance
between two renormalized spins sα, sβ is ℓ times smaller than the
distance between two original spins Si ∈ α, Sj ∈ β one must have

ξ(K ′, h′) =
ξ(K,h)

ℓ
(10.197)

We first consider the case in which h = h′ = 0. The renormalized
coupling constant depends on K and ℓ, i.e.,

K ′ = f(K, ℓ). (10.198)

Letting K = Kc in Eq. (10.198), using Eq. (10.197) one has

ξ[f(Kc, ℓ)] =
ξ(Kc)

ℓ
= ∞. (10.199)

Since ξ[f(Kc, ℓ)] = ξ[Kc], it follows that

f(Kc, ℓ) = Kc. (10.200)

Recalling the recurrence equation (10.198) this shows the important
fact that that K = Kc is a fixed point in the transformation of
the coupling constant, and under rescaling it does not change. This
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is clearly seen in Fig. 10.7: at T = Tc there an infinite coherence
length, as shown in panel a) (in the present system of finite size ξ is as
large as the system size). After repeated block transformations the
block variable configurations is represented in the following panels.
It is clearly seen that ξ remains as large as the whole system.

Figure 10.7: In the upper panel a configuration of the d = 2 Ising model at
T = Tc is shown. Panels b,c,d,e represent the effect of repeated block-spin
transformations applied to such configuration.

Since K ′ was the result of a summation over a finite number of
degrees of freedom, we can assume that f(K, ℓ) is analytic and thus
can expand (10.198) to the first order near the critical point

K ′ = Kc +

[
∂f(K, ℓ)

∂K

]
K=Kc

(K −Kc) + . . . ., (10.201)
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where we have used Eq. (10.200). Alternatively, introducing the
distances from criticality ϵ = (K −Kc)/Kc and ϵ

′ = (K ′ −Kc)/Kc,
this equation can be cast as

ϵ′ = a(ℓ)ϵ, (10.202)

where a(ℓ) = [∂f(K, ℓ)/∂K]K=Kc . Eq. (10.201) implies that if the
system is not exactly at criticality (i.e. K ̸= Kc) it will move further
away from Kc either towards T = ∞ (if the original coupling con-
stant is K < Kc) or towards T = 0 (if K > Kc). This is clearly seen
in Figs. (10.8, 10.9). Here one clearly see that after repeated block
transformations one moves either towards a typical T = ∞ config-
uration (i.e. ξ = 0 and zero magnetization), or towards a typical
configuration at T = 0 (i.e. ξ = 0 and m = 1).

Figure 10.8: As in Fig. 10.7 but at T = 1.22Tc.

Suppose now to rescale the spin system by a factor ℓ1, so that
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from the above equation ϵ′ = a(ℓ1)ϵ and then to rescale again the
cells by a factor ℓ2, arriving finally at ϵ′′ = a(ℓ2)ϵ

′ = a(ℓ2)a(ℓ1)ϵ. We
require that the transformation from ϵ to ϵ′′ obeys group properties
i.e. the same result for ϵ′′ must be obtained if we directly tranform
the system scaling by a factor ℓ1ℓ2. One can easily check that, using
a naive majority rule (namely sα will take the value of the majority of
spins in the cell) to determine the value of sα, the group property is
obeyed in the cases which are expected to be most relevant (namely
those in which there are not very large fluctuations between the
distribution of spins inside the cells). From the group property it
follows that ϵ′′ = a(ℓ1ℓ2)ϵ, and hence

a(ℓ1ℓ2) = a(ℓ1)a(ℓ2). (10.203)

This functional form has the only solution

a(ℓ) = ℓx. (10.204)

Therefore (10.202) becomes

ϵ′ = ℓxϵ, (10.205)

where ϵ is the scaling field and x the scaling exponent given by (from
Eq. (10.205))

x = ln a(ℓ)/ ln ℓ. (10.206)

We relate now x to the correlation exponent ν. Close to Kc, ξ
shows the usual divergence ξ(ϵ) = ξ0ϵ

−ν . From (10.197) and (10.205)
it follows

ξ(ϵ) = ℓ ξ(ℓxϵ) = ξ0 ℓ (ℓ
xϵ)−ν , (10.207)

and hence

x =
1

ν
(10.208)

Similarly, in the presence of a small field, the renormalized field
is

h′ = ℓyh. (10.209)

10.15.2 Summing over internal degrees of freedom

We now relate the free energy of the system of spins to the system
of cells. In doing that we will provide a more precise procedure
to define the block variables which amounts to a summation of it
internal degrees of freedom.
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Figure 10.9: As in Fig. 10.7 but at T = 0.99Tc.

The partition function for the spin system ZN(K,h) can be writ-
ten

ZN(K,h) =
∑
{si}

e−βH =
∑
{sα}

∑
internal

sα

e−βH =
∑
{sα}

e−βH′
= ZN ′(K ′, h′)eW0(K,h),

(10.210)
where we have partitioned the sum over the spin variables into the
sum over the internal degree of freedom of the cells

∑
internal

sα
(this

means a restricted summation over all the configurations of spins Si

inside cell α which provide a value sα of the block variable) and the
sum over the degree of freedom of the cells

∑
{sα}. N

′ = ℓ−dN is the
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number of cells. We have used also the relation∑
internal

sα

e−βH = e−βH′
(10.211)

which is the way to define H′ and, in the last passage, the invariance
of the form of the Hamiltonian (10.196). From Eq. (10.210) we have

−kBT
lnZN(K,h)

N
= −kBT

lnZN ′(K ′, h′)

N ′
N ′

N
− kBT

W0(K,h)

N
.

(10.212)
Taking the limit N → ∞, we obtain the relation between the free
energy for spin f(K,h) and the free energy per cell f(K ′, h′)

f(K,h) = ℓ−df(K ′, h′) +B(K,h), (10.213)

where B(K,T ) = kBTW0(K,T )/N . We can assume that B(K,h)
is not singular at the critical point since B(K,h) was the result of
a summation over a finite number of degrees of freedom. Therefore
if we define fsing(ϵ, h) as the singular part of f(K,h), from (10.213)
we have

fsing(ϵ, h) = ℓ−dF(ℓxϵ, ℓyh). (10.214)

This relation (10.214) shows that the (singular part of) the free en-
ergy is a generalized homogeneous function (see Sec. 10.14.1).

We now examine the consequences of (10.214). Since (10.214) is
valid for any ℓ, for any ϵ we can chose an ℓ such that ℓxϵ = 1. From
(10.214) immediately follows

fsing(ϵ, h) = ϵd/xφ

(
h

ϵy/x

)
, (10.215)

where φ(z) = F(1, z) is a function of only one variable. Taking into
account that

CH ∼
(
∂2f

∂t2

)
h=0

∼ t−α; (10.216)

M ∼
(
∂f

∂h

)
h=0

∼ tβ;

χ ∼
(
∂2f

∂h2

)
h=0

∼ t−γ,

from (10.215), it follows

−α =
d

x
− 2, β =

d

x
− y

x
, −γ =

d

x
− 2y

x
(10.217)
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(in the first of these relations we have only kept the leading diver-
gence as t→ 0). These relations show that all critical exponents can
be expressed in terms of two independent quantities x and y. As a
consequence, α, β, and γ are not independent, and it is easy to see
that they satisfy the relation

α + 2β + γ = 2, (10.218)

which is the Rushbrooke relation with an equality sign. Note that
from (10.208) and the first of Eqs. (10.217) it also follows that

dν = 2− α, (10.219)

which reproduces the second scaling relation.
The scaling hypothesis not only predicts relations among critical

exponents, but also predicts a kind of data collapse. From (10.215)
we can calculate the magnetization m = ∂g/∂h, we find

m = ϵβϕ′(hϵ−y/x) (10.220)

If we plot m as a function of ϵ for each value of h we will find that
the data are all scattered in the m-ϵ plane. If however we plot m/ϵβ

as a function of h/ϵy/x, we will see that for all values of h the data
will follow only one curve. This phenomenon is called data collapse
and is a consequence of the form (10.215) of the free energy. This
property is also useful in calculating critical exponents. In fact, we
can find β and x/y until we obtain the best data collapse.

The scaling approach followed in the previous section was histor-
ically developed mainly by Leo Kadanoff to obtain the generalized
form for free energy. Although the approach contained the basis
for further development, no progress was made until 1972 when K.
Wilson derived his renormalization group theory. In the phenomeno-
logical scaling approach, the cell variables are introduced but they
are not precisely defined. To allow the explicit calculation of scal-
ing transformation (10.220) and consequently of the critical expo-
nent through relation (10.205) it was needed an implementation of
(10.211), i.e., it was necessary to define the cell variables and the
internal degree of freedom in terms of the spin variables . Then us-
ing (10.211) we can calculate the renormalization coupling constant.
To illustrate how the renormalization group works, we consider in
the next section a very simple case, the1d Ising model, where the
renormalization transformation can be carried over exactly.
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10.15.3 Ising model in one dimension

Let us start by recalling that the exact solution of the model (Sec.
10.11.1) shows that for H = 0 the correlation length diverges as

ξ ∼ e2J/(kBT ), (10.221)

as T approaches absolute zero, which can therefore be considered a
critical point. However it must be stressed that a zero-temperature
critical point is quite different from the usual one at finite Tc because
the system is (fully) magnetized at T = 0, at variance with what
happens at Tc > 0. This implies for instance that the exponent
β cannot be defined. From Eq. (10.221) it is clear that also the
exponent ν cannot be defined in the usual way. However, introducing
u = e−2J/(kBT ) - a quantity that goes to zero as T → Tc = 0 playing
the role of a distance from the critical point, analogously to t =
(T − Tc)/TC is systems with Tc > 0, one can write

ξ ∼ u−ν , (10.222)

with ν = 1.
The partition function for the 1d Ising model in a zero field can

be written
Z =

∑
{si}

eK(S1S2+S2S3+S3S4+... ), (10.223)

which can also be written as

Z =
∑

S1,S3,...

∑
S2,S4,...

eK(S1S2+S2S3)eK(S3S4+S4S5) . . . . (10.224)

We consider the system divided into cells of size ℓ = 2 made of spins
(1, 2)(3, 4)(5, 6) . . . . For convenience we consider the first spin in
each cell (namely those on sites 1,3,5...) the cell variable and spin
2,4,6 the internal variable. In (10.224) the second sum is over the
internal degree of freedom of the cell. After summation of the inter-
nal degrees of freedom the spins on odd sites become block variables
which we denote with si instead of the original symbol Si. Therefore,
using (10.211), the renormalized Hamiltonian is given by∑

S2,S4,...

eK(S1S2+S2S3)eK(S3S4+S4S5) · · · = eK
′[s1s3+s3s5+s5s7+···+(N/2)W0 ,

(10.225)
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where K ′ and W0 can be easily calculated from∑
S2=±1

eK(S1S2+S2S3) = eK
′s1s3+W0 . (10.226)

From (10.226) we have

eK(S1+S3) + e−K(S1+S3) = eK
′s1s3+W0 . (10.227)

By fixing first S1 = s1 = S3 = s3 = ±1 and then S1 = s1 = −S3 =
−s3 = ±1, we obtain two equations,

e2W0 = 2(u+ u−1) (10.228)

and

u′ =
2

u+ u−1
, (10.229)

where, for convenience, we have used the variable u = e−2K ; u′ =
e−2K′

. Here u = 0 corresponds to T = 0 and u = 1 to T = ∞.
Our goal is to find the critical point and the critical exponent. From
the previous section we know that the critical point is a fixed point.
The fixed points are those that are invariant under the rescaling
transformation (10.229). These are given by solving

u∗ =
2

u∗ + u∗−1
, (10.230)

Equation (10.230) can be solved graphically by locating the inter-
section of u′(u) given by (10.229) and u′ = u. From Fig. 10.10 and
Eq. (10.230) we see that there are two fixed points: u∗ = 0 (T = 0)
and u∗ = 1 (T = ∞). From the previous section, we know that the
critical point is a fixed point. But not all fixed points correspond to
critical points. What is the meaning of the other fixed points?

In general, we must have at a fixed point for (10.227)

ξ(u∗) =
ξ(u∗)

ℓ
. (10.231)

This equation is satisfied when ξ(u∗) = ∞ or ξ(u∗) = 0. The first
case corresponds to a critical point, the second case usually occurs
at T = 0 or T = ∞ where the correlation length is zero. This second
fixed point is called a trivial fixed point. How do we distinguish a
trivial fixed point from a critical point?
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Figure 10.10: Graphical solution of Eq. (10.230) for d = 1. The dashed magenta
line is the recurrence map.

Following the argument of the previous section, expanding the
renormalized coupling constant near the fixed point

u′ − u∗ = a(ℓ)(u− u∗), (10.232)

we can associate the scaling exponent x = ln a/ ln ℓ with the behavior
of the correlation length at the fixed point, since x = 1/ν (see Eq.
(10.208)). If x > 0, the correlation length diverges as ξ ∼ (u −
u∗)−1/x. If, on the other hand, x is negative then the correlation
length vanishes at the fixed point. Since ℓx = a ≡ (∂u′/∂u)u=u∗ , x is
positive or negative depending whether the slope at the fixed point
a ≡ (∂u′/∂u)u=u∗ is larger or smaller than 1. When the slope a > 1
the fixed point is also called unstable; when a < 1 it is called stable.
This terminology become clear if we consider the evolution un of an
initial point u0 close to the fixed point under n successive iteration.
From (10.232) we find

un − u∗ = an(u0 − u∗). (10.233)

If a > 1 (unstable fixed point), after many iterations un moves away
from the fixed point. If a < 1 (stable fixed point), un → u∗, i.e.,
un is attracted by the fixed point. In conclusion we can say that an
unstable fixed point corresponds to a critical point, while a stable
fixed point corresponds to a trivial fixed point. In the 1d Ising
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model we can easily recognize that the fixed point u∗ = 0 (T = 0)
is unstable since (∂u′/∂u)u=u∗ > 1 and therefore corresponds to the
critical point, while u∗ = 1 (T = ∞) is unstable, corresponding to
T = ∞. From the figure, it is easy also to pictorially recognize the
stable from the unstable fixed point by representing the successive
interaction and seeing how they are attracted or repelled by the two
fixed points.

Finally, expanding near u∗ = 0 (critical point), we find

u′ = 2u, (10.234)

therefore a = 2. Taking into account that the rescaling factor ℓ = 2,
recalling Eq. (10.206) we find the critical exponent ν given by

ν =
ln ℓ

ln a
= 1. (10.235)

Therefore the correlation length close to u = 0 (T = 0) behaves as

ξ ∼ ϵ−ν ∼ u−1 = e2J/kBT , (10.236)

which coincides with the analytic result obtained from the exact
solution. Notice that in the 1d case ϵ is not the usual quantity
(K −Kc)/Kc but instead u− uc = e−2K − e−2Kc .

10.15.4 Ising model in two dimensions

In the one-dimensional model, the renormalization procedure has
generated a new Hamiltonian for the cells identical in form to the
original spin Hamiltonian apart from a constant. This usually is
not the case. If we try the same procedure in two dimensions, we
immediately realize that the renormalization procedure produces in
general a new Hamiltonian which does not coincide with the previ-
ous one. In fact the new hamiltonian contains not only the original
nearest neighbour spin interaction but many more interaction terms
such as next nearest neighbour spin interactions, four spin interac-
tions and so on. We therefore must resort to some approximation so
that the original Hamiltonian generates itself under renormalization.

A simple procedure introduced by Migdal and developed by Kadanoff
is based on some approximation that manages to reproduce the orig-
inal nearest neighbor Ising Hamiltonian for any dimension. We
will apply the Migdal-Kadanoff renormalization group to the two-
dimensional case. This procedure is done in two steps. In the
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first step after dividing the sytem in cells of linear dimension l = 2
(dashed violet line in Fig. 10.11), one removes all the interactions
coming out from the central spin A and adds these interactions to
the other interactions in the cell. This is done uniformly in the entire
lattice. It is easy to check that, in this way, the interactions along
the perimeter of the cells are doubled. For instance, by stipulating to
add the vertical bonds of spin A to the vertical ones of B by moving
them to the right, and similarly we move the horizontal bonds of A
upwards, half of the perimeter bonds are doubled. The remaining
half (down and left edges of the box) are doubled due to the same
procedure performed on the neighbouring cells. In conclusion, the
bond-moving procedure ends up with an interaction 2K along the
perimeter of the cell, while the central spins in the A positions now
do not interact with any other spins and can be ignored.

After this first step the B spins interact with two neighbor spins
only as in the one-dimensional chain. The second step then consists
in applying the same decimation procedure of the one-dimensional
case to the B spins. The final result is that spins of type A and B
are removed and the surviving spins in position C interact with a
new renormalized interaction K ′. Thus the entire renormalization
procedure consists in renormalizing K into K ′, having rescaled the
system by a factor ℓ = 2.

The calculation corresponding to the second step follows precisely
the decimation procedure done in one dimension. The only differ-
ence now is that the intermediate interaction is 2K. The recursion
relation is therefore as in Eq. (10.229) with the replacement u→ u2,
i.e.

u′ =
2

u2 + u−2
(10.237)

Fig. 10.12 shows the presence of 3 fixed points

1) u∗ = 0 (T = 0) (10.238)

2) u∗ = 1 (T = ∞)

3) u∗ = uc (T = Tc).

The first two fixed points are stable. The third one uc = 0.54... is
unstable. The critical exponent is

ν =
ln 2

ln ac
≃ 1.33, (10.239)
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Figure 10.11: The Migdal-Kadanoff decimation procedure.

where

ac =
du′

du

∣∣∣∣
u=uc

. (10.240)

It is easy to see from the figures that if we renormalize the system
starting from an initial value uc, the coupling constant remains the
same (scale invariant). If the initial value u0 > uc (T0 > Tc), under
renormalization the system approaches the stable fixed point u∗ = 1
(T = ∞). On the other hand, starting from u0 < uc(T < Tc). The
coupling constant under renormalization approaches u = 0 (T = 0).
How do we understand physically this process? If T > Tc in the orig-
inal spin system two nearest-neighbor spins interact with a coupling
interaction J . Under renormalization the cells interact via a new cou-
pling interaction that is smaller than J , since u = exp(−2βJ) → 1
and hence J → 0. When under repeated renormalization the cell is
of the order or larger than ξ, two nearest neighbor cells are practi-
cally independent and the renormalized interaction is almost zero.
This explains why eventually the coupling constant tends towards
zero. Similarly, if we start below Tc the majority of spins are up and
at a coarse grained level if the majority of the spins in the cell are
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Figure 10.12: Graphical solution of Eq. (10.237) for d = 2. The dashed magenta
line is the recurrence map.

up, the cell is in the up configuration so that in proportion a larger
fraction of cells is up compared to the fraction of up spins. This
induces coupling interactions among the cells larger than the inter-
actions among the spins. As we continue renormalizing, the cells
eventually reach the correlation length and almost all the cells look
perfectly ordered, consequently the coupling interaction approaches
infinity, consistently with u = exp(−2βJ) → 0.

10.15.5 Universality

In the approximation involved in the Migdal-Kadanoff approach to
the Ising model it is not possible to show how the renormalization
group can explain the universal behavior of a group of systems. In
a more elaborated renormalization group approach, other parame-
ters of the Hamiltonian, other than K may be involved. For instance
one could consider the model in the presence of an external magnetic
field. Or one might deal with an Ising model with a nearest-neighbor
coupling interaction K1 plus a next-nearest-neighbor coupling inter-
action K2. By mapping the original system onto a new one with a
renormalized Hamiltonian with the same form as coupling constants
K1 and K2 the recursion relation will have the form

K ′
1 = f1(K1, K2, ℓ) (10.241)

K ′
2 = f2(K1, K2, ℓ).
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The fixed points are now points in a larger space. Let us suppose K∗
1

and K∗
2 are the unstable fixed points. Expanding (10.241) around

the fixed point leads to

ϵ′1 = a11ϵ1 + a12ϵ2 (10.242)

ϵ′2 = a21ϵ1 + a22ϵ2.

(10.243)

in which ϵi = (Ki −K∗
i )/K

∗
i and

aij =

(
∂fi
∂Kj

)
K1 = K∗

1

K2 = K∗
2

i, j = 1, 2, (10.244)

which can be put in a matricial form(
ϵ′1
ϵ′2

)
=

(
a11 a12
a21 a22

)(
ϵ1
ϵ2

)
. (10.245)

We can chose a linear combination of ϵ1 and ϵ2

u1 = c11ϵ1 + c12ϵ2

u2 = c21ϵ1 + c22ϵ2, (10.246)

which diagonalizes the matrix in Eq. (10.245), namely such that

u′1 = λ1u1 = ℓx1u1 (10.247)

u′2 = λ2u2 = ℓx2u2,

or (
u′1
u′2

)
=

(
λ1 0
0 λ2

)(
u1
u2

)
. (10.248)

Here u1 and u2 are the scaling fields and x1 and x2 the scaling ex-
ponents.

The fixed point is u1 = u2 = 0, which in the plane of the original
coupling constants ϵ1, ϵ2 is a certain point (see Fig. 10.13). Sitting
exactly on the fixed point one is not displaced by the renormalization
group iterations. But what happens to a point slightly away from
the fixed point? This depends on the sign of the exponents x1, x2.
If xi > 0 the corresponding scaling field ui is said to be relevant.
It is irrelevant if xi < 0, and marginal if x = 0. A case in which
both are relevant is, for instance, the case in which ϵ1 is the coupling
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Figure 10.13: Trajectories of the renormalization group transformation.

constant K and ϵ2 the magnetic field. In this case a point that is
not initially exactly on the fixed point will move further away from
it. As a particular case of a renormalization group trajectory in the
presence of two relevant parameters, let us consider the situation
where the representative point is on the curve defined as u1 = 0,
i.e., c11ϵ1 + c12ϵ2 = 0, but with u2 ̸= 0. Under renormalization one
remains on the manyfold u1 = 0 but u2 will go away from u2 = 0, so
that the fixed point u1 = 0, u2 = 0 will be escaped. The situation is
represented by the orange arrow in Fig. 10.13. In this case one can
have the critical state only for u1 = u2 ≡ 0. Indeed we know that
this is what happens when the scaling fields are the coupling constant
and the magnetic field: criticality is obtained only for H = 0. Let
us consider now the case in which x1 > 0 but x2 < 0. In this case
if one is on the so called critical surface defined as u1 = 0, i.e.,
c11ϵ1+ c12ϵ2 = 0, under renormalization u2 will approach zero (green
arrow in the figure). Therefore any point on the critical surface
will approach the fixed point u1 = 0, u2 = 0. This shows that the
presence of the parameter associated to u2 does not produce any
effect - it is irrelevant - since under renormalizations it goes to zero
in any case. We can readily obtain this result by considering the
correlation length near the fixed point

ξ(u′1, u
′
2) =

ξ(u1, u2)

ℓ
(10.249)
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which, from (10.248) can be written

ℓξ(ℓx1u1, ℓ
x2u2) = ξ(u1, u2). (10.250)

Letting ℓx1u1 = 1 we have

ξ(u1, u2) = u
−1/x1

1 ψ(u2u
|x2|/x1

1 ), (10.251)

where ψ(s) = ξ(1, s), and we have taken into account that x2 < 0.
From (10.251) it follows that, as u1 → 0, ξ diverges as

ξ ≃ ψ(0)u
−1/x1

1 ≡ ξ0u
−1/x1

1 , (10.252)

with ξ0 = ψ(0), and an universal exponent ν = 1/x which does not
depend on the initial value of u2. This shows how renormalization
theory can predict the universal behavior of an entire family of model
systems. All the irrelevant parameters flow to zero under renormal-
ization and do not change the critical exponents. Models which
differ only by irrelevant parameters belong to the same universal-
ity class. As an example, if we introduce next-nearest neighbourgh
interactions in the Ising model with a coupling constant Jnn, this
parameter turns out to be irrelevant.

10.15.6 Renormalization in momentum shell.

Performing the renormalization procedure in k-space on a model
with an Hamiltonian in the form (10.120) (notice that in the mean
field approach of Sec. 10.10.5 this form was considered already as the
free energy), for H = 0 and near d = 4 one arrives at the following
recurrences

r′ = ℓ2r + 12c(ℓ2 − 1)u− 3

2π2
ℓ2 ln ℓ ru,

u′ = (1 + ϵ ln ℓ)u− 9

2π2
ln ℓ u2, (10.253)

where ϵ = 4−d, c is a constant, r is proportional to the distance T −
TMF from the mean field critical temperature and u is proportional
to the quantity b appearing in Eq. (10.120). Eq. (10.253) has two
fixed points, one with

r∗ = u∗ = 0, (10.254)

denoted as the Gaussian fixed point, and the other with

r∗ =
24π2c

9
ϵ , u∗ =

2π2

9
ϵ, (10.255)
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the Heisenberg fixed point. Notice that at the Gaussian fixed point
it is dr′/dr|r=0,u=0 = ℓ2 > 1, meaning that along the r direction (the
temperature) the fixed point is repulsive. Analogously, regarding
u, at the Gaussian fixed point one has du′/du|r=0,u=0 = 1 + ϵ ln ℓ.
Hence for d > 4 the Gaussian fixed point is attractive along u and
it is repulsive below d = 4. Computing the critical exponents one
discovers that those of the Gaussian fixed point are the mean field
exponents. Hence for d > 4, if one starts with a theory with u ̸= 0
and sets the temperature to the mean field critical value TMF the
renormalization group transformation leads to the Gaussian fixed
point with u = 0, and the mean field behavior is found. Conversely,
if d < 4 the recurrence relations (10.253) lead to a renormalized
Hamiltonian at the Heisenberg fixed point. Computing the critical
exponents, to lower order in ϵ one finds

ν ≃ 1

2
+

1

12
ϵ , α ≃ 1

6
ϵ , β ≃ 1

2
− 1

6
ϵ , γ ≃ 1 +

1

6
ϵ , δ ≃ 3 + ϵ , η ≃ 0.

(10.256)



Chapter 11

Dynamics

Thus far we have only considered systems that are at equilibrium.
In this case Statistical Mechanics approaches the problem without
describing the dynamics of the system. However, also in equilibrium,
one could be interested to study how the kinetics occurs. Further-
more, if one wants to generalize the equilibrium distribution given
by the microcanonical, canonical, and grand canonical ensembles to
describe systems out of equilibrium one is forced to provide a dy-
namical description.

11.1 Hydrodynamic approach

We first consider the simple case of a drop of ink diffusing in water.
As already stated, we do not consider the trajectory of each single
ink particle resulting from the microscopic dynamic equation of the
ink particles and the water, but instead consider a probabilistic de-
scription. To illustrate the idea, we use a simple approach based on
the random walk model. This model, which has been developed in
Chapter 2, predicts a Gaussian distribution for the probability that
given the particle at the origin at time t = 0 it is at a distance r
from the origin at time t [see Eq. (2.42)]. The same result can be
obtained using the hydrodynamic approach which is based on Fick’s
law

J⃗(r⃗, t) = −D∇ρ(r⃗, t). (11.1)

This law relates phenomenologically the flux of particles J⃗(r⃗, t) at
position r⃗ and time t to the gradient of the particle density ρ(r⃗, t)
via a constant D, which is called the diffusion coefficient. Physically

180
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Eq. (11.1) means that if the density is not uniform, particles will
move from a region of high density toward a region of low density.

To write an equation for the density, we consider the continuity
equation that relates the density to the flux,

∇ · J⃗ +
∂ρ

∂t
= 0. (11.2)

From (11.1) and (11.2) the diffusion equation follows,

∂ρ

∂t
= D∇2ρ(r⃗, t). (11.3)

Equation (11.3) can be solved under the initial condition that all the
ink particles at t = 0 are at the origin. In this case the solution has
radial symmetry and is given by

ρ(r⃗, t) =
N

(4πDt)3/2
exp

(
− r2

4Dt

)
, (11.4)

where

N =

∫
ρ(r⃗, t)dr⃗ (11.5)

is the number of particles. Note that for t = 0, Eq. (11.4) gives a
delta function, reproducing the initial conditions. Notice also that
Eq. (11.4) is three dimensional analogous to Eq. (2.42) with the
position D = 2pq/τ .

11.2 The Langevin equation

Another approach to studying the diffusion of a particle in a medium
is to write the equation of motion of the diffusing particle, assuming
that the forces due to the particles of the medium can be replaced by
a stochastic force F (t). In this approach, which is due to Langevin,
the equation of motion can be written as

m
dv⃗

dt
= F⃗ (t), (11.6)

where m and v are the mass and velocity of the diffusion particle,
respectively.

Next it is assumed that the force can be composed of two parts:
F⃗1(t) and F⃗2(t). The first is a deterministic force. It contains a term,
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due to the viscosity, proportional to the velocity of the particle plus
any external force, if present. For the moment we will consider the
case where external forces are absent and hence F1 = −(1/B)v⃗,

where B is the mobility coefficient. The second, F⃗2, is a random
force that has the property of having a zero time average over short
intervals of time, namely

m
dv⃗

dt
=

v⃗

B
+ F⃗2(t), (11.7)

with
⟨F⃗2(t)⟩ = 0, (11.8)

where the ⟨. . . ⟩ stands for a time average or, equivalently, an en-
semble average. For convenience we will only consider the ensemble
average. Notice that Eq. (11.8) does not fully describe the statisti-
cal properties of F2 which will be deduced in Sec. 11.2.1. Since Eq.
(11.7) contains a random force it is a stochastic differential equation.

By taking the ensemble average over (11.7) and considering the
property (11.8), the following equation is obtained for the average
velocity ⟨v⃗⟩

m
d⟨v⃗⟩
dt

= −⟨v⟩
B
, (11.9)

from which
⟨v⃗⟩ = v⃗0e

−t/τ , (11.10)

with τ = mB. Equation (11.10) tells us that the average velocity of
a particle with initial velocity v⃗0 goes to zero with a relaxation time
τ , loosely speaking. After a time τ , due to the collisions with other
particles, the particle loses the memory of its initial velocity. Note
that (i) the larger the mass m of the particle, the longer it takes to
lose its initial velocity and the larger is τ ; (ii) the larger the mobility
coefficient, the less resistance opposes the fluid and the larger is τ .

From Eq, (11.7) we can derive an equation for ⟨r2⟩. Taking the
scalar product of both member of (11.7) with r, we obtain

r⃗ · dv⃗
dt

= − r⃗ · v⃗
τ

+
r⃗ · F⃗2

m
. (11.11)

Using the identities

dr2

dt
=

d

dt
(r⃗ · r⃗) = 2r⃗ · v⃗ (11.12)
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and
d2r2

dt2
= 2

d

dt
(r⃗ · v⃗) = 2v2 + 2r⃗ · dv⃗

dt
. (11.13)

From (11.11) it follows

d2r2

dt2
+

1

τ

d

dt
r2 = 2v2 +

2r⃗ · F⃗2

m
. (11.14)

Taking the ensemble average from (11.14), we have

d2⟨r2⟩
dt2

+
1

τ

d

dt
⟨r2⟩ = 2⟨v2⟩, (11.15)

where we have used the properties that ⟨r⃗ · F⃗2⟩ = r⃗ · ⟨F⃗2⟩ = 0. To
solve (11.15), we need to know ⟨v2⟩ . We will calculate this quantity
later for any value of t. However, for long times in which the particle
has reached equilibrium with the system, we can use the theorem of
equipartition of the kinetic energy, namely

1

2
m⟨v2⟩ = 3

2
kT. (11.16)

Substituting (11.16) in (11.15),

d2⟨r2⟩
dt2

+
1

τ

d

dt
⟨r2⟩ = 6kT

m
. (11.17)

The solution of (11.7) under the initial condition that ⟨r2⟩ = 0 and
d⟨r2⟩/dt = 0 is given by (see Appendix F)

⟨r2⟩ = 6kT

m
τ 2
{
t

τ
−
(
1− e−t/τ

)}
. (11.18)

In the limit t ≪ τ , using the expansion e−x = 1 − x + (x2/2) + . . .
from (11.18) we have

⟨r2⟩ = 3kT

m
t2 = ⟨v2⟩t2, (11.19)

while for t≫ τ
⟨r2⟩ = 6kTBt. (11.20)

Equation (11.19) tells us that for time much less than the char-
acteristic time τ , the particle moves as if it were free from colli-
sions with a velocity equal to the thermal velocity (11.16). Equation
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(11.20) gives a time-dependence identical to the one obtained in the
random walk or hydrodynamic approach. In fact, from (11.4) and
(B.4),

⟨r2⟩ = 1

N

∫
ρ(r⃗, t)r2dr⃗ = 6Dt, (11.21)

which, compared with (11.20), gives a relation between the diffusion
coefficient D and the mobility B,

kTB = D, (11.22)

which is known as Einstein’s relation.

Figure 11.1: Paul Langevin (Paris 23/01/1872 - 19/12/1946) and Albert Einstein
(Ulma, 14/03/1879 - Princeton, 18/04/1955).

11.2.1 Statistical properties of the noise

In this section we deduce the statistical properties of the noise and, as
a byproduct, we compute the time behavior of ⟨v2⟩ (in the previous
section it was evaluated only in the long time regime).

Let us write the Langevin equation in the form

dv⃗

dt
= − v⃗

τ
+ a⃗(t) (11.23)

where a⃗(t) = F⃗2(t)/m. The general solution of this equation (see
Appendix E) is

v⃗ = v⃗(0)e−t/τ + e−t/τ

∫ t

0

a⃗(t1)e
t1/τdt1. (11.24)
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Taking the square one has

v2(t) = v2(0)e−2t/τ + e−2t/τ

∫ t

0

∫ t

0

e(t1+t2)/τ a⃗(t1) · a⃗(t2)dt1dt2 +

2e−2t/τ

[
v⃗(0)

∫ t

0

et1/τ a⃗(t1)dt1

]
, (11.25)

and, after averaging

⟨v2(t)⟩ = ⟨v2(0)⟩e−2t/τ + e−2t/τ

∫ t

0

∫ t

0

e(t1+t2)/τ ⟨⃗a(t1) · a⃗(t2)⟩dt1dt2,

(11.26)
since the last term in (11.25) gives zero contribution because a⃗ is not
correlated with v⃗(0) and ⟨⃗a(t)⟩ = 0.

To proceed further, we must know the quantityK(t1, t2) = ⟨⃗a(t1)·
a⃗(t2)⟩, which appears in the integrand. This quantity is a measure
of the correlation of a⃗(t) at time t1 with itself at time t2. For this
reason it is called the auto-correlation function of a⃗(t). In a regime
in which the fluid is stationary, any two-time function depends only
on the time difference s = t1 − t2, hence

K(t1, t2) ≡ K(s) = ⟨⃗a(t1) · a⃗(t2)⟩. (11.27)

Next we assume that
K(s) = Cδ(s). (11.28)

This assumption is physically justified by noting that the values
of a⃗(t1) and a⃗(t1 + s) for large enough s are highly uncorrelated.

Because the force F⃗2 is randomly fluctuating in time, for s larger
than a characteristic s∗,

K(s) = ⟨⃗a(t1) · a⃗(t1 + s)⟩ = ⟨⃗a(t1)⟩ · ⟨⃗a(t1 + s)⟩. (11.29)

Since ⟨⃗a(t1)⟩ = 0, it follows that K(s) = 0. Due to the molecular
agitation, we can expect s∗ to be extremely small. Therefore all
calculations can be made by assuming that the autocorrelation is a
delta function as in Eq. (11.28).

In conclusion, we assume that the force F⃗2 appearing in the
Langevin equation has zero mean and a delta correlation. Using
(11.28), we can easily evaluate the integral in (11.26), giving

⟨v2(t)⟩ = v2(0)e−2t/τ + C
τ

2

(
1− e−2t/τ

)
. (11.30)
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This is the desired expression, which still contains the quantity C,
which is unknown. However, by taking the limit t→ ∞ we find

⟨v2(t)⟩ = C
τ

2
, (11.31)

and using the equipartition theorem we obtain

C =
6kT

τm
=

6kT

Bm2
. (11.32)

Consequently,

⟨F⃗2(t1) · F⃗2(t2)⟩ =
6kT

B
δ(t1 − t2). (11.33)

This relation shows that the higher the strength of the fluctuating
force, the higher the viscosity B−1, showing that these two quantites
have the same orgin in the collisions of the fluid particles.

11.2.2 Harmonic oscillator in a viscous medium

As an application let us consider a particle in a viscous medium
subject to an elastic potential H = (1/2)λr2. If the viscosity is
high we can set m ≃ 0 (overdamped limit). I this limit, and in the
presence of the harmonic force −λr⃗ the Langevin equation becomes

dr⃗

dt
= −Bλr⃗ +BF⃗2(t) (11.34)

The solution is (see Appendix E)

r⃗(t) = r⃗(0)e−Bλt +Be−Bλt

∫ t

0

F⃗2(t1)e
Bλt1dt1, (11.35)

which is similar to Eq. (11.24). Taking the average

⟨r⃗(t)⟩ = ⟨r⃗(0)⟩e−Bλt, (11.36)

which shows that the particle moves from the initial position to zero
in an exponential way with rate Bλ. Proceeding analogously to what
done after Eq. (11.24), using the properties of the noise, one finds

⟨r2(t)⟩ = ⟨r2(0)⟩e−2Bλt +
3kT

λ

(
1− e−2Bλt

)
. (11.37)
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Hence, starting from the initial value ⟨r2(0)⟩ the mean square posi-
tion of the particle converges to the asymptotic value ⟨r2⟩eq = 3kT/λ.
This means that

⟨H(r⃗)⟩ = 1

2
λ⟨r2⟩ = 3

2
kT, (11.38)

which, recalling that the momenta degrees of freedom do not con-
tribute due to m ≃ 0, gives the principle of equipartition of the
energy.

11.3 Master Equation

In the Langevin approach we have considered the motion of a particle
subject to random forces. Let us now write an equation for the
distribution probability f(x, t) of finding a particle between x and
x + dx at time t. For N particles diffusing in a medium in one
dimension, Nf(x, t)dx (the number of particles in the volume dx)
satisfies

N
∂

∂t
f(x, t)dx = −

∫
dx′[Nf(x, t)dxW (x, x′)] +

+

∫
dx′[Nf(x′, t)dxW (x′, x)], (11.39)

where W (x, x′)dx′ is the transition probability per unit time that a
particle in x jumps in a volume between x′ and x′ + dx′. The first
term in (11.39) represents the variation per unit of time of the num-
ber of particles in the volume dx. The second and third terms are the
number of outgoing and incoming particles, respectively, in the vol-
ume dx. Notice the generality of Eq. (11.39), since the forces acting
on the particles are encoded in the W ’s which are now left generic
(we only assume that they do not depend on time, but this also could
be released). Moreover the argument can be trivially extended to a
generic space dimensionality. However, it must be noticed that the
flux of incoming and outgoing particles in Eq. (11.39) does not de-
pend on the velocity of the particles (which never appears in fact).
This implies that we are implicitly working in the overdamped limit
m → 0. By dividing Eq. (11.39) by Ndx, we obtain the master
equation,

∂

∂t
f(x, t) = −

∫
f(x, t)W (x, x′)dx′+

∫
f(x′, t)W (x′, x)dx′. (11.40)
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If space is discrete, instead of Eq. (11.40) one would have

∂

∂t
fi(t) = −

∑
i′

fi(t)Wi,i′ +
∑
i′

fi′(t)Wi′,i, (11.41)

for the probability fi of finding the particle on site i, where Wi,i′

is the transition rate for going from site i to i′. As an example
let us consider the simple case of the unbiased (p = q = 1/2) one
dimensional random walk of Sec. 2. In this case Wi,i′ = 1/2 · δ|i−i′|,1
and from Eq. (11.41) one obtains

∂

∂t
fi(t) =

1

2
∆fi(t) (11.42)

where the operator ∆(yi), given by

∆(yi) = −2yi + [yi−1 + yi+1] , (11.43)

is the discretized laplacian. It is trivial to show that Eq. (11.42) is
arrived also in arbitrary dimension with the discretized laplacian

∆(yi) = −zyi +
∑

⟨j⟩i=1,z

yji (11.44)

where ⟨j⟩i are the z nearest neighbourgh of i. Eq. (11.42) is the dif-
fusion equation (11.3) obtained with the hydrodynamic approach of
Sec. 11.1. Notice however that here it is obtained for the probability
f while in Sec. 11.1 the variable was the density of particles. This
implies that ρ must be intended as an (ensemble) average quantity.

As a further example let us consider the particular case in which∫
W (x, x′)dx′ ≡ 1

τ
(11.45)

does not depend on x. Let us also assume that the (up to now
generic) quantity fst(x), defined as∫

f(x′, t)W (x′, x)dx′ ≡ 1

τ
fst(x), (11.46)

does not depend on time. With these positions, Eq. (11.40) becomes

∂

∂t
f(x, t) = −1

τ
f(x, t) +

1

τ
fst(x). (11.47)
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The solution of (11.47) under the initial condition f(x, 0) = f0(x)
gives (see Appendix E)

f(x, t) = fst(x) + (f0(x)− fst(x)) · e−t/τ . (11.48)

This shows that fst(x) is the asymptotic distribution, i.e. the sta-
tionary state. In the absence of any external driving this is the equi-
librium state, and hence the master equation describes the decay of
a non-equilibrium state towards equilibrium. In this particular ex-
ample the stationary state is reached exponentially fast with a char-
acteristic time τ . Notice that, when it is reached, Eqs. (11.45,11.46)
imply that∫

f(x′, t)W (x′, x)dx′ =

∫
f(x, t)W (x, x′)dx′, (11.49)

meaning that the flux of outgoing and ingoing probability probability
in a point x are the same. This is an obvious property of stationarity.

11.4 Fokker-Planck Equation

In certain conditions the master equation can be reduced to a simpler
equation, called the Fokker-Planck equation, which has the advan-
tage of being a usual partial differential equation for f instead of
an integro-differential one. In order to do that let us suppose that
W (x, x′) is highly peaked around x = x′ and goes rapidly to zero for
x ̸= x′ . This is reasonable if the particle can only jump nearby. Let
us work in one dimension for simplicity and put ξ = x′−x. Equation
(11.40) can then be written

∂

∂t
f(x, t) = −

∫
f(x, t)W (x, x+ ξ)dξ +

∫
f(x+ ξ, t)W (x+ ξ, x)dξ.

(11.50)
When we expand the integrand of (11.50) around x0 = x− ξ, we get

f(x+ ξ, t)W (x+ ξ, x) =
∑
n

1

n!

∂n

∂xn
[f(x+ ξ, t)W (x+ ξ, x)]

∣∣∣∣∣
x=x0

ξn.

(11.51)
Notice that this is not a trivial expansion for small jumps ξ ≃ 0

(in this case, for instance, the zero-th order would be f(x, t)W (x, x))
but an expansion around x − ξ. In other words we re-write f(x +
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ξ, t)W (x+ξ, x) in terms of the translated quantity f(x, t)W (x, x−ξ)
by means of a Taylor expansion).

For small ξ, we can stop at the second order, so that

f(x+ ξ, t)W (x+ ξ, x) = f(x, t)W (x, x− ξ)+ (11.52)

+
∂

∂x
[f(x+ ξ, t)W (x+ ξ, x)]

∣∣∣∣
x=x0

ξ+
1

2

∂2

∂x2
[f(x+ ξ, t)W (x+ ξ, x)]

∣∣∣∣
x=x0

ξ2

namely

f(x+ ξ, t)W (x+ ξ, x) = f(x, t)W (x, x− ξ)+ (11.53)

+
∂

∂x
[f(x, t)W (x, x− ξ)]ξ +

1

2

∂2

∂x2
[f(x, t)W (x, x− ξ)]ξ2.

By putting ξ′ = −ξ, we can easily shown that for integer n it is∫ ∞

−∞
f(x, t)W (x, x−ξ)ξndξ = −(−1)n

∫ −∞

∞
f(x, t)W (x, x+ξ′)ξ′

n
dξ′ =

= (−1)n
∫ ∞

−∞
f(x, t)W (x, x+ ξ′)ξ′

n
dξ′. (11.54)

Therefore from (11.50), (11.53), and (11.54) we obtain the Fokker-
Planck equation,

∂

∂t
f(x, t) = − ∂

∂x
{µ1(x)f(x, t)}+

1

2

∂2

∂x2
{µ2(x)f(x, t)}, (11.55)

where

µ1(x) =

∫ ∞

−∞
W (x, x+ ξ)ξdξ, (11.56)

and

µ2(x) =

∫ ∞

−∞
W (x, x+ ξ)ξ2dξ. (11.57)

Note that µ1 and µ2 can be written as

µ1 ≡
⟨δx⟩
δt

≡ ⟨v⟩, (11.58)

and

µ2 ≡
⟨(δx)2⟩
δt

. (11.59)
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In order to better characterize these terms let us consider again
the Langevin equation in the presence of an external force fext,

m
dv

dt
= − v

B
+ F2(t) + fext. (11.60)

In the overdamped limit m→ 0 we have considered in Sec. 11.3 this
gives

⟨v⟩ = Bfext. (11.61)

Since fext = −∂H/∂x where H is the Hamiltonian, we find

µ1 = −B∂H
∂x

. (11.62)

Moreover, from the Langevin equation in one dimension we find

⟨x2⟩ = 2kTBt t≫ τ, (11.63)

which is the analogue of Eq. (11.20) in d = 1. Since we are consider-
ing the case m→ 0 (τ → 0), Eq. (11.63) is valid for any t. Therefore
for a mean square displacement ⟨(δx)2⟩ in a time δt we have

µ2 =
⟨(δx)2⟩
δt

= 2kTB. (11.64)

In conclusion, the Fokker-Planck equation becomes

∂f

∂t
= B

∂

∂x

[
∂H
∂x

· f
]
+ kBT

∂2

∂x2
f. (11.65)

The first term is a drift term due to external forces. The second
is a diffusive term. In the absence of external forces, Eq. (11.65)
coincides with the diffusive equation. Notice that the procedure
we have followed implies that the Langevin and the Fokker-Plank
equations are complementary approaches.

In the stationary regime t→ ∞, we have

0 =
∂

∂x

[
∂H
∂x

· f
]
+ kT

∂2

∂x2
f, (11.66)

whose solution
feq ∝ e−βH, (11.67)

gives the Boltzmann (canonical) distribution.
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11.4.1 Harmonic oscillator in a viscous medium (revisited)

As an application, let us consider a particle in a viscous medium
subject to an elastic potential H = (1/2)λx2. The Fokker-Planck
equation becomes

∂f

∂t
= λB

∂

∂x
[xf ] + kBT

∂2

∂x2
f (11.68)

under the initial condition that the particle is localized in x0 at t = 0.
The solution is given by (see Appendix to be done)

f(x, t) =

{
λ

2πkBT (1− e−2λBt)

}1/2

exp

[
− λ(x− x0e

−λBt)2

2kBT (1− e−2λBt)

]
.

(11.69)
Equation (11.69) is a Gaussian distribution that becomes a delta
function localized at x0 for t = 0, while the average position ⟨x(t)⟩
moves towards the origin exponentially in time with rate Bλ. For
t → ∞ is a Gaussian centered in x = 0 with width

√
kBT/λ. In

other words, a particle originally in x0 will diffuse moving on average
towards the origin x = 0 with an equilibrium distribution feq given
by

feq(x) =
1

(2πkT/λ)1/2
exp

[
− λx2

2kT

]
, (11.70)

which coincides with the Boltzmann distribution of a particle subject
to an elastic potential U(x) = (1/2)λx2. The mean square displace-
ment in the equilibrium configuration is given by

⟨x2⟩ =
∫
feq(x)x

2dx =
kT

λ
, (11.71)

which can be written as

⟨H(x)⟩ = 1

2
λ⟨x2⟩ = 1

2
kT. (11.72)

which gives the principle of equipartition of the energy. Clearly,
working in d = 3 we would have found Eq. (11.38). The results of
this section are analogous to those found in Sec. 11.2.2 working with
the Langevin equation. This shows that the Fokker-Plank and the
Langevin approach are complementary.
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11.5 General Master Equation

Here we want to generalize the master equation, discussed in Sec.
11.3. Given an ensemble of N equivalent systems, the probability
Pr(t) of finding a system of the ensemble in a state r is given by
Pr(t) = Nr(t)/N , where Nr(t) is the number of systems in the state
r at time t, and N tends to infinity. For instance, in Sec. 11.3 the
states r could be described simply in terms of the particle’s position
x and we used the notation f(x, t) for Pr(t). In general a state r
must be described by all the relevant variables, like, for instance,
positions and momenta of all the particles etc... Using the same
argument as in Sec. 11.3, we can write a differential equation for
Pr(t)

∂Pr

∂t
= −

∑
s

Pr(t)Wrs +
∑
s

Ps(t)Wsr, (11.73)

where Wrs is the probability per unit time that a system goes from
the microscopic state r to the microscopic state s and we are working
with a discrite spectrum of states (the case with continuous variables
is analogue). If we multiply each term of (11.73) by N , the first term
is the rate at which the number of systems in the microstate r in
the ensemble changes. This is given by two terms. The first (with
negative contribution) is the number of systems that in the unit
time go from the state r to any state s. The second (with positive
contribution) is the number of systems that in the unit time go from
any state s into the state r.

To find an expression for Wrs, let us consider (11.73) at equilib-
rium where ∂Pr/∂t = 0. From (11.73) we have∑

s

P (eq)
r Wrs =

∑
s

P (eq)
s Wsr, (11.74)

where P
(eq)
r is the (time-independent) equilibrium distribution. This

equation is certainly satisfied if

P (eq)
r Wrs = P (eq)

s Wsr. (11.75)

Equation (11.75) is called the detailed balance equation. Notice that,
in general, Eq. (11.75) does not fix the transition rates W since it is
a single equation for two unknowns.

For the microcanonical ensemble we have P
(eq)
r = const for each

accessible configuration r. Hence a possible solution is

Wrs = const. (11.76)
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For the canonical ensemble P
(eq)
r = const. · e−βEr . Therefore, a pos-

sible solution of (11.75) is given by the so-called heat bath transition
rates

Wrs = const. · e−βEs . (11.77)

Another possibility are the Metropolis transition rates

Wrs = const. · min
[
1, e−β(Es−Er)

]
. (11.78)

The constants in Eqs. (11.76,11.77,11.78) fix the unit time. If the
system satisfies ergodicity, namely each state can be reached by
any other state s, then Eq. (11.73) with Wrs given by (11.76) or
(11.77) assure that, starting from any initial distribution, the en-
semble evolves toward the equilibrium distribution.

For an isolated system for which the microcanonical ensemble
applies we will show below that the H function

H =
∑
r

Pr lnPr (11.79)

satisfies
dH

dt
= −1

2

∑
r,s

Wrs(Pr − Ps)(lnPr − lnPs) ≤ 0. (11.80)

Since S = −kH, (11.80) implies that the entropy in an isolated
system decreases with the time and reaches the maximum value when
Pr = const. for each r, namely when the equilibrium distribution is
reached.

It remains to show the validity of Eq. (11.80). Taking the time
derivative of H in Eq. (11.79), using the master equation (11.73)
one gets

dH

dt
=
∑
r,s

(−WrsPr +WsrPs) (lnPr + 1) (11.81)

In a microcanonical setting, chosing Wrs = const. so that Wrs =
Wsr, Eq. (11.82) can be written as

dH

dt
=
∑
r,s

Wrs (−Pr + Ps) (lnPr + 1) (11.82)

Exchanging the indexes r, s one has∑
r,s

Wrs (−Pr + Ps) (lnPr + 1) =
∑
r,s

Wrs (Pr − Ps) (lnPs + 1) ,

(11.83)
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where we have used again Wrs = Wsr. Enforcing this relation the
r.h.s. of Eq. (11.82) can be written as

(1/2)

[∑
r,s

Wrs (−Pr + Ps) (lnPr + 1) +
∑
r,s

Wrs (Pr − Ps) (lnPs + 1)

]
,

(11.84)
arriving then at Eq. (11.80).

11.6 Boltzmann Equation

Let us apply the master equation of the previous section to a gas of
N particles obeying the laws of classical mechanics. The states r of
the system are now labelled by the position and momentum of each
particle, which are continuous variables. We will use the shorthand−→
R ≡ {r⃗1, . . . , r⃗N} to denote the 3N positions, and

−→
P ≡ {p⃗1, . . . , p⃗N}

for the momenta. We will also define
−→
P i,j,... as the ensemble of all

the variables
−→
P except those of the particles i, j, ..., (and similarly

for
−→
R i,j,...). Denoting the probability of a state as P Eq. (11.73) can

be written as

∂

∂t
P(

−→
P ,

−→
R, t) = −

∫
d
−→
R ′d

−→
P ′W (

−→
P ,

−→
R ;

−→
P ′,

−→
R ′)P(

−→
P ,

−→
R, t)

+

∫
d
−→
R ′d

−→
P ′W (

−→
P ′,

−→
R ′;

−→
P ,

−→
R )P(

−→
P ′,

−→
R ′, t)

(11.85)

From the joint probability distribution P(
−→
P ,

−→
R, t) the single particle

probability distribution f1 = f(p⃗1, r⃗1, t) of particle 1 can be obtained
by marginalization, i.e. by integrating over the variables of all the
remaining N−1 particles. In the case in which there are not external
forces considered here this function does not depend on space.

f1(p⃗1, t) =

∫
d
−→
R 1d

−→
P 1P(

−→
P ,

−→
R, t). (11.86)

Analogously, the two-particle joint probability is given by

h(p⃗1, r⃗1; p⃗2, r⃗2; t) =

∫
d
−→
R 1,2d

−→
P 1,2P(

−→
P ,

−→
R, t). (11.87)



CHAPTER 11. DYNAMICS 196

The transiton rate is given by two terms

W (
−→
P ,

−→
R ;

−→
P ′,

−→
R ′) = Wtrasl(

−→
P ,

−→
R ;

−→
P ′,

−→
R ′) +Wcoll(

−→
P ,

−→
R ;

−→
P ′,

−→
R ′).

(11.88)
The first term is what one would have in the absence of collisions.
It is

Wtrasl(
−→
P ,

−→
R ;

−→
P ′,

−→
R ′) = δ

(
−→
R ′ −

−→
R −

−→
P

m
δt

)
δ(
−→
P ′ −

−→
P ). (11.89)

The second δ-function ensures momentum conservation, and the first
simply states that in the absence of collisions each particle is dis-
placed by (p⃗/m) δt in a time δt.

Regarding the collision term, in a sufficiently small time interval
δt only a couple of particles can collide. Let us label them as particle
1 and 2 (this can always be done by re-labelling the particles). The
collision term can be written as

Wcoll(
−→
P ′,

−→
R ′;

−→
P ,

−→
R ) = δ(

−→
P ′

1,2 −
−→
P 1,2)δ(r⃗1 − r⃗2)V

−Nw(p⃗1, p⃗2; p⃗
′
1, p⃗

′
2).

(11.90)
The first δ function ensures that all the momenta except those of the
colliding particles are unchanged, while the second implies that a col-
lision can only take place if the two particles are on the same site. If
these conditions are met the scattering probability is V −Nw(p⃗1, p⃗2; p⃗

′
1, p⃗

′
2),

where V is the volume of the system (this term appairs as a normal-
ization, but does not matter much since it is a constant).

Due to Eq. (11.88), the r.h.s. of Eq. (11.85) can be splitted in to
terms

∂

∂t
P(

−→
P ,

−→
R, t) =

(
∂

∂t
P(

−→
P ,

−→
R, t)

)
trasl

+

(
∂

∂t
P(

−→
P ,

−→
R, t)

)
coll
(11.91)

Let us concentrate on the collisional term(
∂

∂t
P(

−→
P ,

−→
R, t)

)
coll

=

− V −N

∫
d
−→
R ′d

−→
P ′ δ(

−→
P ′

1,2 −
−→
P 1,2)w(p⃗1, p⃗2; p⃗

′
1, p⃗

′
2)δ(r⃗1 − r⃗2)P(

−→
P ,

−→
R, t)

+ V −N

∫
d
−→
R ′d

−→
P ′ δ(

−→
P ′

1,2 −
−→
P 1,2)w(p⃗

′
1, p⃗

′
2; p⃗1, p⃗2)δ(r⃗

′
1 − r⃗′2)P(

−→
P ′,

−→
R ′, t)

(11.92)
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Integrating over the variables of all the particles except the first one,
one has(

∂

∂t
f1(p⃗1, t)

)
coll

=

− V −N

∫
d
−→
R 1d

−→
R ′d

−→
P 1d

−→
P ′ δ(

−→
P ′

1,2 −
−→
P 1,2)δ(r⃗1 − r⃗2)w(p⃗1, p⃗2; p⃗

′
1, p⃗

′
2)P(

−→
P ,

−→
R, t)

+ V −N

∫
d
−→
R 1d

−→
R ′d

−→
P 1d

−→
P ′ δ(

−→
P ′

1,2 −
−→
P 1,2)δ(r⃗

′
1 − r⃗′2)w(p⃗

′
1, p⃗

′
2; p⃗1, p⃗2)P(

−→
P ′,

−→
R ′, t) =

−
∫
dp⃗2dp⃗

′
1dp⃗

′
2w(p⃗1, p⃗2; p⃗

′
1, p⃗

′
2)g(p⃗1, p⃗2, t)

+

∫
dp⃗2dp⃗

′
1dp⃗

′
2w(p⃗

′
1, p⃗

′
2; p⃗1, p⃗2)g(p⃗

′
1, p⃗

′
2, t), (11.93)

where we have used all the δ functions to carry out the integrations
and

g(p⃗′1, p⃗
′
2; t) = h(p⃗1, r⃗1; p⃗2, r⃗1; t) (11.94)

is the joint probability of the two particles to be in the same place
r⃗1 which does not depend on r⃗1, similarly to f , due to space homo-
geneity. [Specifically (referring to the first integral): i) integrating

over d
−→
R ′ cancels the V −N in front; ii) integration over d

−→
P ′

1,2 can be

carried over using the δ(
−→
P ′

1,2 −
−→
P 1,2)-function; iii) integration over

d
−→
R ′

1,2d
−→
P ′

1,2 transforms P(
−→
P ,

−→
R, t) into h(p⃗1, r⃗1; p⃗2, r⃗2; t); iv) inte-

gration over dr⃗2 can be carried out using the δ(r⃗1− r⃗2)-function and
transforms h(p⃗1, r⃗1; p⃗2, r⃗2; t) into g(p⃗

′
1, p⃗

′
2; t).]

Performing the same operations on the translation term one easily
obtains (

∂

∂t
f1(p⃗1, t)

)
trasl

= 0. (11.95)

This equation simply express the fact that, since momentum is con-
served in the absence of collisions, the only effect of an elapsed time
δt is to transfer the particle from r⃗1 to r⃗1+

p⃗1
m
δt but since f1 depends

only on the momentum it is left unchanged.
Since it can be shown that the collision transition is symmetric,

w(p⃗′1, p⃗
′
2; p⃗1, p⃗2) = w(p⃗1, p⃗2; p⃗

′
1, p⃗

′
2) one arrives at(

∂f1(p⃗, t)

∂t

)
=

∫
dp⃗2dp⃗

′
1dp⃗

′
2w(p⃗1, p⃗2; p⃗

′
1, p⃗

′
2)[g(p⃗

′
1, p⃗

′
2, t)− g(p⃗1, p⃗2, t)],

(11.96)
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This expression is exact for a diluted gas. However it contains the
unknown correlation function g. We now introduce the crucial as-
sumption

g(p⃗1, p⃗2, t) ≃ f(p⃗1, t)f(p⃗2, t) (11.97)

This says that the momenta of two particles in the volume element
are uncorrelated, so that the probability of finding them simultane-
ously is the product of the probability of finding each alone. This is
known as assumption of molecular chaos. It is necessary to obtain a
closed equation for the distribution function, but there is otherwise
no justification. With this assumption we arrive at

∂f1
∂t

=

∫
dp⃗2dp⃗

′
1dp⃗

′
2w1,2[f

′
2f

′
1 − f1f2], (11.98)

where we have used the compact notation w1,2 = w(p⃗1, p⃗2; p⃗
′
1, p⃗

′
2),

f1 ≡ f(p⃗1, t), f
′
1 ≡ f(p⃗′1, t), and similarly for p⃗2 and p′2. Equation

(11.98) is the famous Boltzmann equation that gives the single par-
ticle probability distribution as a function of time.

11.6.1 Alternative derivation

The master equation that we presented in Sec. 11.3 contains only
the distribution in real space. It can be easily generalized to a dis-
tribution f ≡ f(r⃗, p⃗, t) in the entire phase space, where fdr⃗dp⃗ is
the probability of finding a particle at time t in a volume dr⃗ around
the position r⃗ and with an impulse in a range dp⃗ around p⃗. Boltz-
mann derived an explicit equation for a one-particle distribution in
a gas of particles using the laws of classical mechanics. The dis-
tribution changes in time because molecules enter and leave a given
element dr⃗dp⃗ of Γ-space. Suppose there were no collisions among the
molecules and no external forces. Then a molecule with coordinates
(r⃗, p⃗) at time t will have coordinates (r⃗ + v⃗δt, p⃗), with v⃗ = p⃗/m, at
the instant t+ δt. We could then write

f(r⃗ + v⃗δt, p⃗, t+ δt) = f(r⃗, p⃗, t). (11.99)

The presence of collisions can be taken into account by an extra term
(∂f/∂t)coll defined through

f(r⃗ + v⃗δt, p⃗, t+ δt) = f(r⃗, p⃗, t) +

(
∂f

∂t

)
coll

δt. (11.100)
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Expanding the l.h.s. to first order in δt one arrives at(
∂

∂t
+ v⃗ · ∇r⃗

)
f(r⃗, p⃗, t) =

(
∂f(r⃗, p⃗, t)

∂t

)
coll

. (11.101)

In the absence of external forces it is consistent to assume that the
gas is homogeneous, and hence f does not depend on r⃗. Then one
has

∂

∂t
f(p⃗, t) =

(
∂f(p⃗, t)

∂t

)
coll

. (11.102)

The collision term(
∂f(p⃗, t)

∂t

)
coll

δt =
[
R(p⃗, t)−R(p⃗, t)

]
δt (11.103)

can be written as the difference between the incoming and outgoing
fluxes of particles, where specifically R(p⃗, t)δtdr⃗dp⃗ is the number of
collision events in which one particle leaves the volume element dr⃗dp⃗
in the interval [t, t + δt] and R(p⃗, t)δtdr⃗dp⃗ that of those in which a
particle enters the volume element. Notice that Eq. (11.103) is the
analogous of Eq. (11.73) for f(p⃗, t). Let us consider a collision event
where in the initial state S two particles 1 and 2 have impulses p⃗1
and p⃗2. while in the final state S ′ they are p⃗′1 and p⃗′2. Then we can
write

R(p⃗1, t) =

∫
dp⃗′1 dp⃗2 dp⃗

′
2w1,2g(p⃗1, p⃗2, t), (11.104)

where g(p⃗1, p⃗2, t) is the joint probability that in a volume element
around particle 1 there is particle 2 with momentum p⃗2 (besides
particle 1). Eq. (11.104) states that the number of particles which
are leaving the volume element around molecule 1 can be obtained
by integrating over all the possible final states of the two particles
and over the initial state of particle 2 of the probability of finding
particle 2 with impulse p2 (i.e. g2) times a scattering probability
w1,2 which describes as probable is the transition from the initial to
the final state. The expression (11.104) is the analogous of the first
term on the r.h.s. of Eq. (11.73), namely the statement that the
decrease of probability of being in a state (here labelled by p⃗1, p⃗2)
is given by the probability g2(p⃗1, p⃗2) of being in the state times the
conditional probability w1,2 of going to any other possible final state,
and a sum over all these states (namely over p⃗1, p⃗2) is taken. With
respect to Eq. (11.73) here also a sum over p⃗2 is appairs, since we
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only interested in the loss of probability of particle 1, and hence the
initial degree of freedom p⃗2 of particle 2 is also traced out. Similarly,
for the incoming flux one can write

R(p⃗1, t) =

∫
dp⃗′1 dp⃗2 dp⃗

′
2w

′
1,2g(p⃗

′
1, p⃗

′
2, t), (11.105)

where w′
1,2 is the transition rate from S ′ to S. Since it can be shown

that the collision transition is symmetric, w1,2 = w′
1,2 one arrives at(

∂f(p⃗, t)

∂t

)
coll

=

∫
dp⃗2dp⃗

′
1dp⃗

′
2w1,2[g(p⃗

′
1, p⃗

′
2, t)− g(p⃗1, p⃗2, t)],

(11.106)
This expression is exact for a diluted gas. However it contains the
unknown correlation function g. We now introduce the crucial as-
sumption

g(p⃗1, p⃗2, t) ≃ f(p⃗1, t)f(p⃗2, t) (11.107)

This says that the momenta of two particles in the volume element
are uncorrelated, so that the probability of finding them simultane-
ously is the product of the probability of finding each alone. This is
known as assumption of molecular chaos. It is necessary to obtain a
closed equation for the distribution function, but there is otherwise
no justification. With this assumption we arrive at

∂f1
∂t

=

∫
d3p2d

3p′1d
3p′2w1,2[f

′
2f

′
1 − f1f2], (11.108)

where we have used the compact notation f1 ≡ f(p⃗1, t), f
′
1 ≡ f(p⃗′1, t),

and similarly for p⃗2 and p′2.
Equation (11.108) is the famous Boltzmann equation that gives

the single particle probability distribution as a function of time.

11.6.2 Convergence to equilibrium

In the stationary case, ∂f1/∂t = 0. It can be shown that the solution
in this case has the form of the Boltzmann distribution feq(p⃗) =

e−β(p2/2m). A sufficient condition for ∂f1
∂t

= 0 is,

f ′
2f

′
1 − f1f2 = 0 (11.109)

in such a state (it can be shown that this condition is also necessary).
Taking the logarithms

ln f1 + ln f2 = ln f ′
1 + ln f ′

2. (11.110)
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Eq. (11.110) shows that ln f is a conserved quantity. Since the only
conserved quantites are energy and momentum, ln f must be a linear
combination of these quantities (plus a constant, which of course is
another conserved quantity), and one can write

ln f(p) = −A(p⃗− p⃗0)
2 + lnC (11.111)

or
f(p⃗) = Ce−A(p⃗−p⃗0)2 , (11.112)

where C,A and the three components of p0 are five arbitrary con-
stants. Since p0 can be readily identified with the average momen-
tum, if the gas has no translational motion it must be fixed to p⃗0 = 0.
C and A can be determined by fixing the density of particles ρ, and
the energy of the system or, using equipartition, the temperature T .
One arrives than to

f(p) =
ρ

(2πmkT )3/2
e−

p2

2mkT , (11.113)

namely the Maxwell-Boltzmann distribution.

11.6.3 H-Theorem

A direct consequence of the Boltzmann equation is the famous Boltz-
mann H-theorem. Defining H as

H =

∫
d3p f(p⃗, t) ln f(p⃗, t), (11.114)

we show that dH/dt ≤ 0. Differentiating H with respect to time one
has

dH(t)

dt
=

∫
d3p

∂f(p⃗, t)

∂t
[1 + ln f(p⃗, t)], (11.115)

and using the Boltzmann equation (11.108)

dH(t)

dt
=

∫
d3p1d

3p2d
3p′1d

3p′2w1,2[f
′
2f

′
1 − f1f2][1 + ln f1]. (11.116)

Interchanging p⃗1 and p⃗2 in the integrand leaves the integral un-
changed because w1,2 is symmetric. Making this change of integra-
tion variables and taking one-half of the sum of the new expression
and of Eq. (11.116) one obtains

dH(t)

dt
=

1

2

∫
d3p1d

3p⃗2d
3p⃗′1d

3p⃗′2w1,2[f
′
2f

′
1 − f1f2][2 + ln(f1f2)].

(11.117)
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This integral is invariant under the interchange p1, p2 ↔ p′1, p
′
2 be-

cause for every collision there is an inverse one with the same tran-
sition matrix. Hence

dH(t)

dt
= −1

2

∫
d3p1d

3p⃗2d
3p⃗′1d

3p⃗′2w1,2[f
′
2f

′
1 − f1f2][2 + ln(f ′

1f
′
2)].

(11.118)
Taking half the sum of Eqs. (11.118) and (11.117) one arrives at

dH(t)

dt
=

1

4

∫
d3p1d

3p2d
3p′1d

3p′2w1,2[f
′
2f

′
1 − f1f2][ln(f1f2)− ln(f ′

1f
′
2)].

(11.119)
Since the integrand in this equation is never positive, the theorem is
proved.

If we associate the entropy with −kH, with k a constant, the
theorem states that the entropy is an increasing function of the time
that reaches a maximum in the equilibrium state. At the time,
the results obtained by Boltzmann were considered a proof of the
second law of Thermodynamics starting from the microscopic laws
of classical dynamics. There was immediately a big debate about
the validity of such results.

Two main objections were raised. The first concerned the Boltz-
mann equation. This equation is non-invariant for time reversal as
it can be easily recognized by changing t→ −t in the equation. How
could such an equation be derived from the laws of dynamics which
are invariant under time reversal? (Notice that also the Langevin
equation, the Master equation and the Fokker-Plank equation are
not invariant under time reversal, but in those cases, at variance
with the present one, this is not surprising, due to the explicit pres-
ence of the viscous term whereby mechanical energy is transformed
into heat).

The second objection is based on the recurrence cycles of Poincaré.
Poincaré proved that in a closed system – given an initial configu-
ration in phase space and a region around it, however small – there
exists an interval of time long enough but finite after which the point
representative of the system goes through this region. Therefore the
quantity H cannot always decrease since it must assume values close
to the initial one. In other words, Eq. (11.108) introduces a time
arrow, which is absent in the laws of classical mechanics. According
to classical mechanics, if a trajectory is realized, the same trajectory
in the opposite direction is possible if the velocity of all the particles
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are reversed. According to the H Theorem, a trajectory that could
increase the value of H would never be possible.

In reality, the Boltzmann equation has been proven only under
the condition of ”molecular chaos”. This condition states that the
probability distribution for two particles can be decomposed into the
product of the probability functions of single particles, namely

f2(p⃗1, p⃗2; t) = f1(p⃗1, t)f1(p⃗2, t), (11.120)

which is equivalent to saying that the particles are not correlated.
The Boltzmann equation is valid only if (11.120) is satisfied. If it is
not satisfied, H can also increase. The Boltzmann result must then
be interpreted by saying that in reality most of the time the condition
of molecular chaos is satisfied, and therefore H decreases more than
it increases, resulting on average in a monotonic decreasing function
as is shown in Fig. XX.

How can we reconcile the reversibility implicit in classical mechan-
ics with the H-Theorem? Imagine a gas that is initially confined in
the left half of a box. This state corresponds to a high value ofH. As
the system evolves, the other half will start to be occupied until the
particles are homogeneously distributed, resulting in a decrease ofH.
Classical mechanics states that if at a given time, say t0 , one could
reverse all the velocity then the system would evolve backwards and
all the particles would eventually move to the left half of the box,
resulting in an increase of H contrary to the H-theorem. The point
is that the state that was prepared at t0, by reversing all the veloc-
ities, is characterized by highly correlated particles. Each particle
must take a particular velocity, depending on the velocities of all the
other particles – otherwise the system will not go backwards. This
high correlation implies an absence of molecular chaos and thus in-
validates the H-Theorem. Note that such a highly-correlated state is
extremely improbable and therefore it is extremely improbable that
H could increase so much.

How can the second objection be answered? In reality, for a
macroscopic system with N particles, the recurrence time is of the
order of eN . Therefore one has to expect a time interval, which
cannot even be conceived, before H could start to increase (Fig.
XX). To just have an idea for N ∼ 1024 this recurrence time τ should

be of the order of e10
24
sec.. The age of the universe is estimated to
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be of the order of 1010 years ∼ 1016 sec. Therefore

τ ≃ 1010
24

1016
∼ 10(10

24−16) ∼ 1010
24

ages of the universe. (11.121)

Therefore one would never see such an event. This phenomenon
is similar to the phenomenon of broken symmetry, which we have
studied in the context of critical phenomena. Although the micro-
scopic dynamic is invariant, under time reversal the macroscopic
laws exhibit an asymmetry in time on a time scale comparable to
our observation time. On a much larger time scale, the symmetry is
restored as shown in Fig. XX. For an infinite system τ → ∞, the
symmetry is never restored (see Chapter 10).



Chapter 12

Dynamical properties of
stationary states

12.1 Time-dependent Fluctuation-Dissipation Re-
lation

Let us consider a generic (one time) observable A(t) = ⟨A(t)⟩ of
a generic system whose microscopic variables are the positions r⃗(t)
and the momenta p⃗(t) of all the N constituents, that we shortly
indicate with r⃗N(t), p⃗N(t). In a real system the value of A(t) is a
deterministic function of the initial state (at time t = 0), namely
A(t) = A[t; r⃗N(0), p⃗N(0)]. As we have said several times this func-
tion is impossible to be practically computed, since one should solve
an Avogadro number of coupled Newton equations. However here we
are not interested in its direct computation but we will only use this
formal expression to derive a general relation between correlations
and response functions, as we will see shortly. The probability dis-
tribution Pi = P [r⃗N(0)p⃗N(0)] of the microstates at the initial time
t = 0 in the canonical ensemble is

Pi =
e−βHi

Tri (e−βHi)
(12.1)

where we have introduced the short notation Hi = H[r⃗N(0), p⃗N(0)]
for the initial time value of the Hamiltonian and Tri(·) =

∫
dr⃗N(0)dp⃗N(0) (·).

One also has

⟨A(t)⟩ =
Tri

{
A[t; r⃗N(0), p⃗N(0)]e−βHi

}
Tri {e−βHi}

. (12.2)

205
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The autocorrelation function associated to A is

CA(t, t
′) = ⟨A(t)A(t′)⟩ − ⟨A(t)⟩⟨A(t′)⟩. (12.3)

In an equilibrium state it is CA(t, t
′) = CA(t − t′, 0) = CA(s, 0)

(s = t − t′) due to stationarity, and the expression for CA(s, 0) =
⟨A(s)A(0)⟩ − ⟨A⟩2 is given by

CA(s, 0) =
Tri

{
A[s; r⃗N(0), p⃗N(0)]A[0; r⃗N(0), p⃗N(0)]e−βHi

}
Tri {e−βHi}

− ⟨A⟩2eq,

(12.4)
where ⟨. . . ⟩eq means an equilibrium ensemble average. The quantity
CA(s) has the limiting behaviors{

lims→0CA(s, 0) = ⟨A2⟩eq − ⟨A⟩2eq
lims→∞CA(s, 0) = 0

(12.5)

The decay of the autocorrelation function is known as the regression
of fluctuations.

Perturbation

Let us now apply to the system above (which up to now was unper-
turbed and in equilibrium) an external perturbation that changes
the Hamiltonian as H → H + ∆H. As an effect of this the system
will be driven out of equilibrium. For simplicity let us assume that
the perturbation couples linearly to the variable A, in the sense that

∆H = −f(t)A(t), (12.6)

where f(t) is a generalized force. Denoting with Af (t) and with
A0(t) the values of A in the perturbed and unperturbed systems
respectively, the shift determined by the perturbation is

δA(t) = Af (t)− A0(t) (12.7)

and its average

δ⟨A(t)⟩ = ⟨Af (t)⟩f − ⟨A0(t)⟩eq,0 (12.8)

where ⟨. . . ⟩f and ⟨. . . ⟩eq,0 are averages over the perturbed and un-
perturbed ensembles (the latter is an equilibrium one). Expanding
⟨δA(t)⟩ around f(t) = 0 one has

⟨δA(t)⟩ =
∫ ∞

−∞
R(t, t′)f(t′)dt′ +O(f 2), (12.9)
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where we have used the fact that the zero order term is absent since
⟨δA(t)⟩ vanishes for f(t) = 0 and

R(t, t′) =
δ⟨A(t)⟩
δf(t′)

∣∣∣∣
f=0

(12.10)

is the so called response function which describes as A(t) is mod-
ified by the perturbation with respect to the unperturbed system.
Since we have arrested the expansion to linear order (which is mean-
ingful only if the perturbation is small) R is the linear response
function, but higher order responses, necessary to describe the case
of larger perturbations, exists (but we will not considere them here).
Eq. (12.9) can be read as the Taylor expansion of a function, ⟨δA(t)⟩
which depends on all the trajectory, i.e. on a continuous set of vari-
ables f(t′) labeled by t′. The theory whose aim is to predict the
properties of the response functions is called response theory or, if it
is restricted to first order, linear response theory. As any two-time
average quantity at stationarity the response depends only on the
time difference R(t, t′) = R(s). This quantity can be shown to be
independent on the form of the perturbation, so we can make the
simple choice

f(t) =

{
f , t < 0
0 , t ≥ 0

. (12.11)

Then, using the equivalent of Eq. (12.2) for the perturbed system,
for t > 0 one has

⟨A(t)⟩f =
Tri

{
A0[t; r⃗

N(0), p⃗N(0)]e−β(Hi+∆Hi)
}

Tri {e−β(Hi+∆Hi)}
. (12.12)

Notice that we have written A0 in the numerator of this equation
since A0 = Af for t > 0. If the perturbation is small (i.e. ∆Hi/Hi ≪
1) we can expand to first order the Boltzmann factors around the
unperturbed Hamiltonian thus obtaining

⟨A(t)⟩f ≃
Tri

{
A0[t; r⃗

N(0), p⃗N(0)]e−βHi(1− β∆Hi)
}

Tri {e−βHi(1− β∆Hi)}
≃ Tri

{
A0[t; r⃗

N(0), p⃗N(0)]e−βHi(1− β∆Hi)
}
·

·

{
1

Tri (e−βHi)
+
Tri

(
β∆Hie

−βHi
)

[Tri (e−βHi)]2

}
≃ ⟨A⟩eq,0 − β [⟨∆HiA(t)⟩eq,0 − ⟨A⟩eq,0⟨∆Hi⟩eq,0]
= ⟨A⟩eq,0 + βf

[
⟨A(t)A(0)⟩eq,0 − ⟨A⟩2eq,0

]
. (12.13)
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In this chain of equalities we have always kept only terms up to first
order in ∆Hi, used the approximation (x − ϵ)−1 ≃ x−1 + ϵ/x2 for
small ϵ and the expression (12.6) of the perturbation. The result
above can be written as

δ⟨A(t)⟩ ≃ βfCA(t, 0). (12.14)

Re-writing Eq. (12.9) taking into account the form (12.11) of f we
obtain

δ⟨A(t)⟩ = f

∫ 0

−∞
dt′R(t− t′) = f

∫ ∞

t

dsR(s, 0) (12.15)

and hence

R(s, 0) = − 1

f

d

dt
δ⟨A(t)⟩ (12.16)

Hence, from Eq. (12.13) for s > 0 we obtain

R(s) = −βdCA(s)

ds
, (12.17)

where we have posed CA(s) ≡ CA(s, 0) and similarly for R(s). For
s < 0 it is R(s) ≡ 0 due to causality (a system cannot respond
before the perturbation is applied). Eq. (12.17) is the celebrated
fluctuation-dissipation theorem (Callen and Welton 1951). As it
is clear from its derivation it applies only to a system whose unper-
turbed state is an equilibrium one. There is no reason for its validity
when this is not the case.

The fluctuation-dissipation theorem relates a property - the re-
sponse function of a certain observable A - of a perturbed non-
equilibrium system (but not to far from equilibrium, since the theo-
rem is limited to linear terms in f) to a property (the fluctuations,
or analogously the correlation function of A) of the corresponding
unperturbed equilibrium system. The basic idea at the basis of the
theorem, originally due to Onsager, is the so called Onsager regres-
sion hypothesis. Basically it amonts to the statement that the effect
of a small perturbation is to displace the system from its equilibrium
state not much differently than what commonly happens also in the
unperturbed system as due to the spontaneous thermal fluctuations.
This implies that a relation between the two a priori unrelated sys-
tems must exist. This relation is Eq. (12.17). Notice that it cannot
be obtained with the usual methods of equilibrium statistical me-
chanics since it involves the dynamics (in fact we have invoked the
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deterministic evolution of the system, even if, fortunately, its solu-
tion has not been necessary). A derivation of the same result can
be obtained for stochastic descriptions, such as those in terms of a
Master equation, Langevin equation, Fokker-Planck or others.

12.2 Fluctuation Theorem

In the previous section we have discussed the origin of the time asym-
metry in a non-equilibrium process. The probability of observing an
event where entropy decreases is exponentially large in the num-
ber of constituents. However, in mesoscopic systems (with a large
but not enormous number of components), the probability of such
fluctuations is not completely negligible and may trigger important
processes, notably biological ones. Fluctuation theorems allow one to
determine the relative probability of occurrence of such rare events.
In order to fix the ideas, let us consider a non-equilibrium setting
where the two parts SA and SB of a system S = SA + SB are put
in contact with two reservoirs A and B at different temperatures
TA and TB < TA (see Fig.). This system attains a stationary state
where some average heat ⟨Q⟩ flows from A to B according to the
laws of thermodynamic (i.e. heat is transferred from hotter systems
to colder ones). Notice that, although stationary, this state is not
an equilibrium one since there is a flux, or a current, which breaks
the time-reversal symmetry of the equilibrium state (in other words,
detailed balance is not obeyed).

Let us denote with Q the fluctuating heat flowing in some time
interval τ through the system. Although the probability distribution
P (Q) is not in general known, fluctuation theorems provide a relation
between P (Q) and P (−Q). Let us stipulate that Q > 0 when heat
flows from A to B. Hence ⟨Q⟩ > 0. The fluctuation theorem then
informs us on the relative probability of observing a flux Q in the
normal direction (i.e. in the same direction of the average) to that
of observing the same amount of flux in the strange (opposite to the
average) direction.

Let us denote with Si the set of variables needed to specify the
state of the i-th constituent (for instance position and momentum if
it is a particle or the spin if it is a magnetic particle). We assume
for simplicity that constituents are evolved sequentially according to
a certain sequence that, by relabeling the variables, we can always
assume to be i = 1, 2, . . . . Since SA and SB are in contact with
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heat reservoirs a canonical setting is appropriate and we denote with
W qi

SiS′
i
the transition rate for the variable Si to change to S ′

i. This

transition rate depends in principle on the whole configuration of the
system (on all the {Si} and not only on Si) even if in order to ease
the notation this is not made explicit. The superscript qi reminds
us that during the transition the heat qi has been exchanged with
the reservoir which, since there is no work done, equals also the
energy variation of the system in the move. Assuming that the i-
th component is in contact with the heat bath A, due to detailed
balance (11.75) its transition rates must obey

W qi
SiS′

i

W−qi
S′
iSi

= e−βAqi , (12.18)

Since the constituents are updated sequentially and independently,

the (conditional) probability of a trajectory TR
{qi}
rs going from a

configuration r to another s afterN elementary moves by exchanging
the set of heats {qi} is

W
TR

{qi}
rs

∝
∏

i=1,N

W qi
SiS′

i
. (12.19)

Using Eq. (12.18) one has

W
TR

{qi}
rs

W
TR

{−qi}
sr

= e−(βAQA+βBQB), (12.20)

where QA =
∑

i∈SA
qi is the total heat exchanged by the constituents

in contact with the thermostat A (and similarly for QB) and TR
{−qi}
sr

is the time reversed trajectory of TR
{qi}
rs , i.e. the one going from s

to r by exchanging the elementary amounts of heat {−qi}.
Eq. (12.20) is the generalized detailed balance condition for a

system in contact with two heat baths (clearly it can be straight-
forwardly generalized to the case of more than two reservoirs). The
energy variation of the system in going from r to s is ∆E = E ′−E =
QA +QB. For a finite system ∆E is also finite. On the other hand
the typical values of the exchanged heats QA and QB in the time in-
terval τ grow with τ . Then, in the large-τ limit one has QB ≃ −QA,
and in this limit Eq. (12.20) reads

W
TR

{qi}
rs

W
TR

{−qi}
sr

≃ e−(βA−βB)QA , (12.21)



CHAPTER 12. DYNAMICAL PROPERTIES OF STATIONARY STATES211

The probability of a certain heat QA ≃ QB ≃ Q to flow in the system
is

P (Q) =
∑
r

∑
s

′∑
TR

{qi}
rs

PrWTR
{qi}
rs

, (12.22)

where
∑′ indicates a sum over all the trajectories such that

∑
i qi =

Q. Analogously one can write

P (−Q) =
∑
s

∑
r

′∑
TR

{−qi}
sr

PsWTR
{−qi}
sr

. (12.23)

Eq. (12.23) can be readily obtained from Eq. (12.22) because, since∑′
TR

{qi}
rs

involves all the trajectories where the heat Q is exchanged,∑′
TR

{−qi}
sr

necessarily involves all those where −Q is tranferred.

Using Eq. (12.21) one can write

P (Q)

P (−Q)
=

∑
r

∑
s

∑
TR

{qi}
rs

PrWTR
{qi}
rs∑

s

∑
r

∑
TR

{qi}
rs

PrWTR
{qi}
rs

Ps

Pr
e−(βA−βB)QA

. (12.24)

Here we have used the fact that∑
s

∑
r

∑
TR

{−qi}
sr

PsWTR
{qi}
rs

=
∑
s

∑
r

∑
TR

{qi}
rs

PsWTR
{qi}
rs

(12.25)

since replacing the sum over the forward trajectories with that over
their time reversed keeping the transition rates unchanged simply
amounts to reshuffle the terms in the product in Eq. (12.19).

In a stationary state it can be proved that, quite generally, the
ratio between the probability of two configuration is finite, i.e. 0 <
K1 < Ps/Pr < K2 < ∞. Hence, taking the logarithms of both sides
in Eq. (12.24) one has

(βA − βB)Q− lnK2 < ln
P (Q)

P (−Q)
< (βA − βB)Q− lnK1. (12.26)

Since typical values of the exchanged heat Q grow with τ , neglecting
lnK1 and lnK2 with respect to (βA − βB)Q in the large-τ limit one
has

ln
P (Q)

P (−Q)
= (βA − βB)Q. (12.27)
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This is one instance of the so called fluctuation theorems which
generally relate the probability of observing a certain flux in the right
direction to that of the reversed quantity. Although we have derived
the theorem for a non-equilibrium stationary state obtained by keep-
ing a system between two reservoirs, similar relations can be found
for different systems in stationary non-equilibrium states generated,
for instance, by mechanical stirring or other external drivings.

12.3 Spectral Analysis

In Chapter 11 we studied the motion of a diffusive particle using
the Langevin equation. Figure XX shows a typical realization of
such a noisy signal. In nature many signals exhibit this noisy, ir-
regular behavior: the voltage at the end of a resistor, the daytime
air temperature outside, any economic index, an earthquake signal.
The question we want to consider here is how do we characterize
such a y(t) signal? We can assume the system has some periodicity
T ≡ 1/f0, take the limit T → ∞ in the same way we take periodic
boundary conditions in a finite system of volume V , and send the
volume to infinity.

We can perform a Fourier analysis of the signal

y(t) = a0 +
∑
n

an cos(2πnf0t) +
∑
n

bn sin(2πnf0t). (12.28)

The coefficients are given by

a0 =
1

T

∫ T

0

y(t)dt, (12.29)

an =
2

T

∫ T

0

y(t) cos(2πnf0t)dt, (12.30)

bn =
2

T

∫ T

0

y(t) sin(2πnf0t)dt. (12.31)

Defining the time-average h(t) = T−1
∫ T

0
h(t) of a generic quantity

h, the time average of the signal is y = a0 which, for convenience,
we can set equal to zero (otherwise we could consider another signal
x(t) = y(t) − a0, which has the property x = 0). Instead of a time
average, we could calculate equivalently an ensemble average over
many equivalent signals. For example, for a fixed value t, we could
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take the ensemble average over many signals yk(t)

⟨y(t)⟩ = 1

N
∑
k

yk(t). (12.32)

If N is large enough, the time average and ensemble average will
coincide, y = ⟨y(t)⟩ = 0. We can take then the ensemble average of
an and bn from (12.30) and (12.31) and since ⟨y(t)⟩ = 0 we find

⟨a0⟩ = 0 (12.33)

⟨an⟩ = 0 (12.34)

⟨bn⟩ = 0 (12.35)

Using the ortogonal properties of the trigonometric functions sine
and cosine, the time average of y2(t),

y2(t) =
1

2

∑
n

(a2n + b2n). (12.36)

If we take the ensemble average of (12.36), we obtain

⟨y2(t)⟩ = 1

2

∑
n

(⟨a2n⟩+ ⟨b2n⟩), (12.37)

where we have used the fact that y2(t) = ⟨y2(t)⟩. ⟨a2n⟩ and ⟨b2n⟩ are
the contributions from the frequency nf0 to the width of the signal.
Since they correspond to the same frequency, and differ only by a
phase, they are expected to be equal ⟨a2n⟩ = ⟨b2n⟩ (can you grasp the
hidden hypothesis under this assumption?). Therefore

⟨y2(t)⟩ =
∑
n

⟨a2n⟩. (12.38)

From (12.30) we have

⟨a2n⟩ = 4f 2
0

∫ T

0

∫ T

0

⟨y(t1)y(t2)⟩ cos(2πnf0t1) cos(2πnf0t2)dt1dt2.

(12.39)
Considering stationary signals, the autocorrelation function that ap-
pears in the integrand will only depend on the time differences
s = t2 − t1. Therefore we can write

K(s) = ⟨y(t1)y(t2)⟩, (12.40)
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where K(s) is expected to be extremely peaked around s = 0. Using
the properties of the trigonometric functions we can write (12.39) as

⟨a2n⟩ = f 2
0

∫ T

0

dS

∫ T

−T

dsK(s)[cos(2πnf0s) + cos(4πnf0S)], (12.41)

where we have made the following change

s ≡ t2 − t1 (12.42)

S ≡ 1

2
(t2 + t1) (12.43)

The second term in the integral (12.41) gives zero contribution.
Therefore from (12.41) we have

⟨a2n⟩ =
2

T

∫ T

0

K(s) cos(2πnf0s)ds. (12.44)

This is the Wiener-Khintchine relation. It relates the weight of the
contributions of each frequency to the Fourier Transform of the au-
tocorrelation functions. Hence, inverting the Fourier transform one
has

K(s) = 2
∑
n

⟨a2n⟩ cos(2πnf0s) (12.45)

Given the signal, one can calculate the autocorrelation function and
therefore the width ⟨a2n⟩ that characterizes the signal.

Figure 12.1: Norbert Wiener (Columbia, 26/11/1894 - Stoccolma, 18/03/1964)
and Aleksandr Kinchin (Kondrovo (Kaluga Oblast) 19/07/1894 - Moscow
18/11/1959

Let us look at the physical meaning of Eqs. (12.44,12.45). For
s = 0, from Eqs. (12.38,12.45) we have

K(0) = 2
∑
n

⟨a2n⟩ = 2⟨y2(t)⟩, (12.46)
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namely the width of the signal is the integral of the weights over
all frequencies. Note that signals with the same width (the same
intensity) may differ completely from each other (Fig. XX). The
fingerprint of a signal is ⟨a2n⟩. A signal that contains all frequencies
with the same Fourier amplitude is extremely noisy and is called
white noise. In fact, from (12.44), if ⟨a2n⟩ = const, K(s) ∝ δs,0.
This means that the signal at time t is completely uncorrelated with
the signal at any time later t + δt, no matter how small δt is. The
increments of the position of a random walker are an example of
such an extremely noisy signal. In the T → ∞ limit the Fourier
frequencies f = nf0 become a continuum and we denote with W (f)
the Fourier components. In this case pure white noise would give a
width K(0) = ∞, which is not physically possible. Therefore white
noise is an idealization. There is always a cutoff at some frequency
f0, namely

W (f) ≡
{
W0 0 ≤ f ≤ fc
0 f > fc

. (12.47)

Consequently, using the properties of the Fourier transform, K(s)
will have a range ∆s ∼ 1/fc, in which it is essentially different from
zero. This means that the signal is correlated with itself within an
interval of the order of ∆s ∼ 1/fc. The more frequencies contribute
to the signal (large fc) the noisier it is.



Chapter 13

Quantum Statistical
Mechanics

13.1 Fundamental Postulates and Density Ma-
trix

We now extend the basic postulates of classical Statistical Mechan-
ics to quantum Statistical Mechanics. In classical mechanics, a mi-
crostate is characterized by the variables {q, p}, which evolve ac-
cording to the Hamiltonian equations. In quantum mechanics, a
microstate is characterized by a wave function ψ(x, t), which evolves
according to the Shröedinger equation

ih̄
∂

∂t
ψ(x, t) = Ĥψ(x, t), (13.1)

where Ĥ is the Hamiltonian operator.
The quantum mechanical (qm) mean value of any observable de-

fined by an operator Â at time t is

⟨A(t)⟩qm =

∫
ψ∗(x, t)Âψ(x, t)dx, (13.2)

where the wave function is normalized to unity. The result of a
measurement Aobs is the time average over observable time,

Aobs ≡
1

τ

∫ τ

0

⟨A(t)⟩qmdt. (13.3)

As in classical Statistical Mechanics, the goal in quantum Statis-
tical Mechanics is to construct an appropriate ensemble such that

216
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temporal average and ensemble average coincide. We start with an
isolated system characterized by N particles, volume V , and en-
ergy E. We consider therefore N copies of the system at time t
macroscopically equivalent (with the same volume, same number of
particles, and same energy) if ψK is the state of the Kth system of
the ensemble. The mean value of the observable in such a state is

⟨AK(t)⟩qm =

∫
ψ∗
K(x, t)ÂψK(x, t)dx, (13.4)

⟨A(t)⟩ens ≡ 1

N
∑
K

⟨AK(t)⟩qm. (13.5)

How do we characterize the ensemble? In classical Statistical Me-
chanics, the ensemble is characterized by the distribution function
ρ(q, p). Here we will show that the ensemble is characterized by an
operator ρ̂. If ϕn(x) is a complete set of eigenfunctions at a given
time t, then each wave function ψK(x, t) can be expressed as the
linear combination of the ϕn(x)

ψK(x, t) =
∑
n

C(K)
n (t)ϕn(x), (13.6)

where the coefficients C
(K)
n (t) satisfy the normalization condition∑

n

|C(K)
n (t)|2 = 1. (13.7)

Consequently (13.4) can be written

⟨AK(t)⟩qm ≡
∑
mn

C∗(K)
m (t)C(K)

n (t)Amn, (13.8)

where

Amn ≡
∫
ϕ∗
m(x)Âϕn(x)dx (13.9)

Consequently,

⟨A⟩ens ≡
1

N
∑
K

⟨AK(t)⟩qm =
∑
mn

[
1

N
∑
K

C∗(K)
m (t)C(K)

n (t)

]
Amn.

(13.10)
If we define

ρnm(t) ≡
1

N
∑
K

C∗(K)
m (t)C(K)

n (t), (13.11)
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then (13.10) can be written in a more complete form,

⟨A(t)⟩ens =
∑
nm

ρnm(t)Amn. (13.12)

Here ρnm can be considered the element of a matrix associated with
an operator ρ̂ in the representation of ϕn(x). Namely, one can define
an operator ρ̂ such that

ρnm =

∫
ϕ∗
n(x)ρ̂(t)ϕm(x)dx. (13.13)

In fact, it is possible to check that when changing the base of the
ϕn(x) into a new base by a unitary transformation the matrix el-
ements transform as the element of a matrix associated with an
operator.

Equation (13.12) can then be written as the trace of the product

of ρ̂ and Â. Indeed (ρ̂Â)n,j ≡
∑

m ρnmAmj and hence Tr(ρ̂Â) ≡∑
n(ρ̂Â)nn =

∑
nm ρnmAmn. Hence we can write

⟨A(t)⟩ens = Tr
(
ρ̂Â
)
, (13.14)

where we have assumed that the coefficients C
(K)
m (t) are normalized

to 1 [see Eq. (13.7)] (otherways it would be necessary to divide the
r.h.s. by Trρ̂). Note that the trace of an operator is independent of
the chosen base.

In conclusion, ρ̂ characterizes the ensemble distribution; in fact
once ρ̂ is known the ensemble average can be carried out for any
observable. Now we concentrate on the equilibrium case, where ρ̂
does not depend on time. Just as in classical Statistical Mechanics
we postulate the form of ρ(p, q) for an isolated system, so also here
we must postulate the operator ρ̂. After specifying a particular base
we then postulate

ρnn =
1

N
∑
K

|C(K)
n |2 =

{
Ω−1 ∀n : E ≤ En ≤ E + δE
0 otherwise

, (13.15)

where Ω is the dimension of the basis (i.e. the number of states) and

ρmn = 0 for m ̸= n. (13.16)
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The matrix is then written

(ρmn) ≡



Ω−1 0
Ω−1

. . .
Ω−1

0
. . .

0 0


(13.17)

and the diagonal elements that are zero correspond to those eigen-
functions of the energy that are not accessible, namely outside the
energy interval (E,E + δE).

The first part of postulate (13.15) corresponds to the equal a pri-
ori probability since ρnn is the probability of finding a given system
of the ensemble in state n. Since ρnn = const. for the accessible
state, every accessible state is equally probable. The second part of
the postulate does not have a correspondence in classical Statistical
Mechanics and, for the reason that will be explained below, it is
called the postulate of the random phases. Notice that, restricted
on the states whose energy lies in the interval (E,E + δE), the mi-
crocanonic density matrix is a multiple of the unity matrix. For this
reason it takes the same form, namely it is diagonal, in any base.
This property is specific to the microcanonical ensemble.

If we write the coefficients C
(K)
n as the product of the modulus

times the phase

C(K)
n ≡ |C(K)

n |eiφ
(K)
n , (13.18)

then the non-diagonal elements are

ρmn =
1

N
∑
K

|C(K)
n ||C(K)

m |ei(φ
(K)
m −φ

(K)
n ). (13.19)

Therefore, according to random phase postulate (13.16), (13.19)
must be zero for any m ̸= n. This can occur only if the phases

in the ensemble are uncorrelated with the moduli |C(K)
n ||C(K)

m | and
their difference φm−φn are completely random (as functions of K).
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Indeed in such case, still for m ̸= n one has

1

N
∑
K

|C(K)
n ||C(K)

m |ei(φ
(K)
m −φ

(K)
n ) =

=
1

N
∑
K

|C(K)
n ||C(K)

m | · 1

N
∑
K

ei(φ
(K)
m −φ

(K)
n ) = 0 (13.20)

(in the first passage we have used the fact that, for independent
variables, the average of a product equals the product of the averages.
The final result is obtained because the second average is zero due
to symmetry). In conclusion, the postulate of quantum Statistical
Mechanics is that the time average of any observable is equal to the
ensemble average in which the ensemble is specified by a density
matrix given by (13.15) and (13.16).

In order to better understand the physical meaning of this postu-
late, we will reformulate the postulate in terms of only the evolution
properties of the wave function of the system (as we did when we
introduced the ergodicity postulate). From Eqs. (13.3,13.9) we have

Aobs ≡
∑
mn

ρ′mnAmn, (13.21)

where
ρ′nm ≡ C∗

m(t)Cn(t). (13.22)

Here the bar indicates time average.
Now the postulate that the time average (13.21) and the ensemble

average coincide implies

ρmn = ρ′mn (13.23)

The postulate on the density matrix implies

|Cn(t)|2 =
{

const. E ≤ En ≤ E + δE
0 otherwise

, (13.24)

and
C∗

m(t)Cn(t) = 0 for m ̸= n. (13.25)

Equation (13.24) implies that the probability of finding the system
in any of the accessible states is the same for all the states, while
Eq. (13.25) states that interference (or non diagonal) terms vanish.
Physically one says that the state of the system is a superposition
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of incoherent states or in a mixture of states. In conclusion, the
postulates of quantum Statistical Mechanics are equivalent to the
statement that the wave function of a macroscopic system is a su-
perposition of incoherent states with coefficients satisfying (13.24)
and (13.25). We remark that the properties (13.24,13.25) must hold
for any representation of the density matrix, i.e. independently on
the chosen basis.

13.2 Liouville Equations

We can show now that the density matrix in general satisfies an
equation that is the analog of Liouville’s equation in classical me-
chanics. Using this equation we will show that the density matrix
(13.17) that has been postulated for a system in equilibrium is really
a time-independent operator.

Let us consider the Shroedinger equation for the wave function
ψ(K) relative to the Kth system of the statistical ensemble,

ih̄
∂

∂t
ψ(K)(x, t) = Ĥψ(K)(x, t). (13.26)

Fixing a base ϕm(x) (not necessarily eigenfunctions of the Hamilto-

nian Ĥ),

ψ(K)(x, t) =
∑
m

C(K)
m (t)ϕm. (13.27)

Substituting (13.27) into (13.26) we have

ih̄
∑
m

d

dt
C(K)

m (t)ϕm =
∑
m

C(K)
m (t)Hϕm. (13.28)

Multiplying (13.28) by ϕn(x), integrating over x, and using the or-
thonormality conditions for ϕm(x), we have

ih̄
d

dt
C(K)

n (t) =
∑
m

C(K)
m (t)Hnm. (13.29)

where

Hnm ≡
∫
ϕ∗
nHϕm. (13.30)

Recalling the definition of the density matrix

ρnm(t) ≡
1

N
∑
K

C∗
m

(K)(t)C(K)
n (t), (13.31)
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from (13.29) we have

ih̄
∂

∂t
ρnm =

ih̄

N
∑
K

(
C(K)

n

d

dt
C∗

m
(K) + C∗

m
(K) d

dt
C(K)

n

)
=
∑
ℓ

(Hnℓρℓm−ρnℓHℓm),

(13.32)
or, in terms of operators,

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂]. (13.33)

To make more transparent the connection with Liouville’s equa-
tion derived in classical mechanics, we consider the definition of the
operator ρ̂ through the matrix ρnm (t) [see Eq. (XX)]

ρnm =

∫
ϕ∗
n(x)ρ̂(t)ϕm(x)dx. (13.34)

Equation (13.34) gives the intrinsic time dependence of the operator
ρ̂(t). If we let the base ϕn(x) evolve in time, then we have

ρnm[t, ϕ
∗
n(t), ϕm(t)] =

∫
ϕ∗
n(x, t)ρ̂(t)ϕm(x, t)dx, (13.35)

where we have indicated the time dependence through ϕ∗
n(x, t) and

ϕm(x, t) explicitly.
The total derivation of (13.35) gives

ih̄
d

dt
ρnm[t, ϕ

∗
n(t), ϕm(t)] = −

∫
ϕ∗
n(x, t)[H, ρ̂]ϕm(x, t)dx+

ih̄

∫
ϕ∗
n(x, t)

∂ρ̂(t)

∂t
ϕm(x, t)dx, (13.36)

which can be written formally as

ih̄
dρ̂

dt
= [ρ̂,H] + ih̄

∂ρ

∂t
, (13.37)

which together with (13.33) gives

ih̄
dρ̂

dt
= 0, (13.38)

which is the analog of Liouville’s equation in classical Statistical Me-
chanics. Both Eq. (13.33) and Eq. (13.35) are general equations and
must be satisfied in any condition and by any ensemble distribution.
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In particular, in equilibrium the basic postulates of quantum Sta-
tistical Mechanics have led to the choice of a density matrix that
is diagonal in the energy base; therefore, the operator ρ̂ commutes
with the Hamiltonian H. It follows from (13.33) that the matrix ρ̂ is
time-independent. This result is thus consistent with the postulate
that ρ̂ describes a macroscopic system in equilibrium.

13.3 Ensembles

The statistical ensemble considered thus far is related to an isolated
system and is called a microcanonical ensemble. In this case thermo-
dynamic functions, can be obtained from the density matrix using
the arguments developed in classical Statistical Mechanics, and the
entropy is given by

S = kB lnΩ. (13.39)

If the system is not isolated and can exchange energy with a reser-
voir, the density matrix will still be diagonal in the base of the energy
eigenfunctions and using the same considerations as those used in
classical statistical mechanics, it is possible to show that in the en-
ergy representation only the diagonal elements do not vanish and
are given by ρnn = Z−1e−βEn , where the normalization constant Z
is the partition function.

In terms of operators, we then have

ρ̂ = Z−1e−βĤ, (13.40)

with the partition function given by

Z = Tr e−βĤ =
∑
n

e−βEn , (13.41)

and the free energy F given by

F = −kBT lnZ. (13.42)

Similarly, for the grand canonical ensemble the matrix density is
given by

ρ̂ = Z−1e−βĤ+βµN̂ , (13.43)

where µ is the classical potential and N̂ the operator relative to the
number of particles. The grand partition function Z is given by

Z = Tr eβµN̂−βĤ =
∑
r

eβµNr−βEr , (13.44)
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which is related to pressure P and volume V by

PV = kBT lnZ. (13.45)

13.4 Paramagnetism

Consider a particle with a two-component spin in a thermal bath in
an external magnetic field H⃗. We want to determine the partition
function and the average magnetization in the direction of the field.
The Hamiltonian can be written

Ĥ = −µ⃗ · H⃗ = −µ̂zH, (13.46)

where µz is the component of the magnetic moment along the direc-
tion of the field (coincident with the z axis), and µz is given by a
Pauli matrix

µ̂z = µ0

(
1 0
0 −1

)
, (13.47)

with µ0 being the magnetic component along the z direction. The
density matrix is partition function is given by

Z = Tr e−βĤ = eβµ0H + e−βµ0H . (13.48)

Using Eq. (13.14), the average magnetization is given by

⟨µ̂z⟩ = Z−1Tr
(
e−βĤµ̂z

)
= µ0

eβµ0H − e−βµ0H

eβµ0H + e−βµ0H
, (13.49)

which coincides with the result obtained in classical Statistical Me-
chanics.

13.5 Density Matrix and Partition Function for
Non-Interacting Particles

We will calculate now the density matrix for one particle in a box.
We will extend the result to N particles with N very large and will
show that – in a certain limit of low density and high temperature –
we recover the partition function found classically with the two ad
hoc assumptions: the correct Boltzmann counting and the size of a
cell being equal to h3.
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We start with one particle in a box of volume L3 with the Hamil-
tonian Ĥ = p̂2/(2m) with the eigenvectors and eigenvalues given
by

Ĥ|K⟩ = ϵK |K⟩, (13.50)

where we use the Dirac notation where |K⟩ is a vector corresponding
to a microstate,

ϵK =
h̄2K2

2m
, (13.51)

and

K⃗ =
2π

L
n⃗, n⃗ ≡ {nx, ny, nz}, (13.52)

with nx, ny, and nz are ±1, ±2, ±3 . . . . In the representation of the
coordinates, the wave function is

uK(x⃗) = ⟨x|K⟩ = 1

L3/2
eiK⃗·x⃗. (13.53)

Let us calculate the elements of the density matrix ρ̂ = Z−1e−βĤ in
the base of the eigenfunction of the position

⟨x⃗|e−βĤ|x⃗′⟩ =
∑
K,K1

⟨x|K⟩⟨K|ρ̂|K1⟩⟨K1|x′⟩ =
∑
K

⟨x|K⟩e−βϵK ⟨K|x′⟩,

(13.54)
where we used the fact that there are no off-diagonal elements in ρ̂.
From (13.53) we have

⟨x⃗|e−βĤ|x⃗′⟩ =
∑
K

1

L3
e−βϵKeiK⃗·(x⃗−x⃗′). (13.55)

In the limit L → ∞, the sum can be transformed into an integral,
namely

⟨x⃗|e−βĤ|x⃗′⟩ = 1

(2π)3

∫
e−

βh̄2K2

2m eiK⃗·(x⃗−x⃗′)dK⃗, (13.56)

where we have used the property (13.52)

∆nx∆ny∆nz

L3
=

∆Kx∆Ky∆Kz

(2π)3
. (13.57)

Here ∆Kx,∆Ky,∆Kz correspond to the incremental ∆nx = ∆ny =
∆nz = 1.
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The integral in (13.56) is the Fourier transform of a Gaussian
distribution. This integral can be expressed as (see Appendix B
(Eq. (B.5))

⟨x⃗|e−βĤ|x⃗′⟩ = λ−3e−2π
(x⃗−x⃗′)2

2λ2 , (13.58)

and gives a Gaussian whose width is given by the De Broglie’s ther-
mal wavelength

λ =
h√

2πmkBT
, (13.59)

and is the inverse of the width of the original Gaussian in (13.56).
Notice that the non-diagonal terms of the density matrix do not
vanish here, since we are not in the energy representation.

The partition function is given by

Z = Tr e−βĤ =

∫
⟨x⃗|e−βĤ|x⃗⟩dx = λ−3V, (13.60)

where V is the volume of the box (notice that we have computed
the trace over the position eingenvectors since the trace does not
depend on the basis) . Note that we find the same result classically
for one particle without making ad hoc hypotheses, whereas classical
Statistical Mechanics uses an ad hoc hypothesis relative to the size
of the cell in phase space. Clearly, since the partition function is
the same as in the classical case, all the thermodynamic properties
of the quantum system are inherited by the classical case (e.g. the
equipartition theorem holds etc...).

Substituting the value of Z in Eq. (13.58) the density matrix
elements in the cohordinates representation are obtained

⟨x⃗|ρ̂|x⃗′⟩ = 1

V
e−2π

(x⃗−x⃗′)2

2λ2 , (13.61)

Equation (13.61) is significant. For x = x′, (13.61) becomes

⟨x⃗|ρ̂|x⃗⟩ = 1

V
, (13.62)

which represents the density probability of finding the particle in x.
Since the particle is equally distributed in the box, this probability
is independent on x. The same result is also found classically.

However, the non-diagonal contribution x ̸= x′ gives a result that
has no analog in classical Statistical Mechanics. In fact ⟨x′ρ̂x⟩ repre-
sents the average of the product of amplitude probability of finding
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the same particle in x and x′. In classical mechanics this quantity
is a delta function since the particles are localized. Here we find
instead a Gaussian whose width gives a measure of the wave packets
associated with the particle. From (13.59) we note that as T → ∞
the width λ → 0. This means that the particle is localized and
therefore behaves as a classical particle.

We want to extend the result to the case of two particles and then
to N particles.

Let us start with two noninteracting particles. The eigenvalues
and eigenfunctions of the Hamiltonian H are now

H|K⃗1K⃗2⟩ = ϵ(K1, K2)|K⃗1K⃗2⟩, (13.63)

where

ϵ(K1, K2) =
h̄2K2

1

2m
+
h̄2K2

2

2m
. (13.64)

The wave function for one particle is given by (13.53). For two

particles, the wave function ψE(x⃗1, x⃗2) = ⟨x⃗1x⃗2|K⃗1K⃗2⟩ is given by

ψE(x⃗1, x⃗2) =
1√
2
[uK1(x⃗1)uK2(x⃗2)± uK1(x⃗2)uK2(x⃗1)], (13.65)

where the symmetric wave function (with plus sign) refers to bosons
while the antisymmetric (with minus sign) refers to fermions.

Consider now the density matrix elements

⟨x⃗1x⃗2|ρ̂|x⃗′1x⃗′2⟩. (13.66)

Proceeding as in Eq. (13.54) one has

⟨x⃗1x⃗2|e−βĤ|x⃗′1x⃗′2⟩ =
′∑

K⃗1,K⃗2,K⃗′
1,K⃗

′
2

⟨x⃗1x⃗2||K⃗1K⃗2⟩⟨K⃗1K⃗2|e−βĤ|K⃗ ′
1K⃗

′
2⟩⟨K⃗ ′

1K⃗
′
2||x⃗′1x⃗′2⟩ =

=
′∑

K⃗1,K⃗2

e−βϵ(K1,K2)ψ∗
E(x⃗

′
1, x⃗

′
2)ψE(x⃗1, x⃗2), (13.67)

where the prime indicates the constraint that in the sum are excluded
all the states obtained by exchanging K1 and K2, since the effect of
this operation has already been taken into account in Eq. (13.65) and
we do not want here to sum over states which are not independent.
Substituting (13.65) into (13.67), we note that each term in (13.67)
is split in the sum of four separate terms which are obtained by
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exchanging K1 with K2. Therefore we can keep only two terms and
remove the contraint from the sum. Therefore (13.67) becomes

⟨x⃗1x⃗2|e−βĤ|x⃗′1x⃗′2⟩ =
1

2

∑
K1,K2

e−β(h̄2K2
1/(2m))e−β(h̄2K2

2/(2m)) ·

[uK1(x⃗1)uK2(x⃗2)u
∗
K1
(x⃗′1)u

∗
K2
(x⃗′2)± uK1(x⃗2)uK2(x⃗1)u

∗
K1
(x⃗′1)u

∗
K2
(x⃗′2)] =

=
1

2V 2

[∑
K1

e−β(h̄2K2
1/(2m))eiK⃗1(x⃗1−x⃗′

1) ·
∑
K2

e−β(h̄2K2
2/(2m))eiK⃗2(x⃗2−x⃗′

2)±

±
∑
K1

e−β(h̄2K2
1/(2m))eiK⃗1(x⃗2−x⃗′

1) ·
∑
K2

e−β(h̄2K2
2/(2m))eiK⃗2(x⃗1−x⃗′

2)

]
. (13.68)

The diagonal elements are

⟨x⃗1x⃗2|e−βĤ|x⃗1x⃗2⟩ =
1

2λ6

[
1± e−2π(r212/λ

2)
]
, (13.69)

where in the last passage we have transformed sums over K1 and
K2 into integrals as done before in Eq. (13.56) and we have posed
r12 ≡ |x⃗1 − x⃗2|. From this expression we can calculate the partition
function

Z =

∫
⟨x⃗1x⃗2|ê−βĤ|x⃗1x⃗2⟩dx⃗1dx⃗2 =

1

2λ6

∫ [
1± e−2π(r212/λ

2)
]
dx⃗1dx⃗2 =

=
1

2λ6

∫ [
1± e−2π(r212/λ

2)
]
dx⃗1dr⃗12 =

1

2

(
V

λ3

)2 [
1± 1

25/2

(
2λ3

V

)]
.

(13.70)

In (13.70) the term nλ3 appears with n = 2/V being the particle
density.

Whenever
nλ3 ≪ 1, (13.71)

we can neglect the second term and the partition function becomes
the same for both fermions or bosons,

Z =
1

2

(
V

λ3

)2

, (13.72)

which means that quantum mechanical effects can be neglected. This
result can be generalized to N non-interacting particles. Under con-
ditions (13.71) where n = N/V is the density, the partition function
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reduces to the classical limit

Z =
1

N !

(
V

λ3

)N

, (13.73)

which coincides with the classical derivation (7.83).
What is the physical meaning of condition (13.71)? Since the

mean interparticle distance r ∼ n−1/3, (13.71) can be written as

λ≪ r, (13.74)

this implies that the width of the wave packet associated with each
particle is much less than the interparticle distance. When this con-
dition is satisfied, the wave functions do not overlap and the quantum
effect can be neglected. Nevertheless it is interesting to note that
(13.73) still contains the fingerprints of quantum mechanics, namely
the constant Planck h and the 1/N ! that comes from the particle in-
distinguishibility, which were both introduced in classical Statistical
Mechanics as ad hoc hypotheses.

Note also that while classical mechanics, which is obtained from
quantum mechanics in the limit h̄ → 0, loses completely any mem-
ory of the quantum effect, classical Statistical Mechanics cannot be
obtained from quantum Statistical Mechanics putting h̄ = 0, which
would result in a divergence of the partition function, but only ne-
glecting powers of h.

13.6 Classical Descriptions of Quantum Parti-
cles

We consider here two noninteracting quantum particles in a box.
According to Eq. (13.69), the density probability distribution is
given by

ρ(x⃗1, x⃗2) ∝
(
1± e−2π(r212/λ

2)
)
. (13.75)

In the classical limit, this distribution becomes spatially uniform,
as expected for these noninteracting classical particles. Quantum
effects creates instead a correlation, as can be seen from (13.75),
implying that there is an effective interaction acting between the two
particles. In particular note that for fermions the probability that
two particles are located in the same place is zero, as if there were an
effective repulsion due to the exclusion Fermi principle stating that
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two particles cannot be in the same state. On the contrary, bosons
behave as if there were an effective attraction. What is the effective
potential between two (identical) classical particles? If the effective
potential is V (r), then the density probability distribution for two
classical particles is

ρ(x⃗1, x⃗2) ∝ e−βV (r12). (13.76)

Equating (13.76) with (13.75) gives

V (r12) ∝ −β−1 ln
(
1± e−2π(r212/λ

2)
)
. (13.77)

The plot of the potential in the case of bosons and fermions is shown
in Fig. 13.1. In the Bose case it is attractive, a fact that can be
interpreted as a statistical attraction among bosons. For fermions,
instead, there is a statistical repulsion. Notice that in both cases the
potential vanishes rapidly as r12 becomes larger than λ; accordingly
its influence is weakened by raising the temperature.
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Figure 13.1: The statistical potential V (r12) between a pair of particles obeying
Bose-Einstein (upper panel) or Fermi-Dirac (lower panel) statistics. Two values
of temperature are shown (see key).



Chapter 14

Statistics of
Non-Interacting Particles

In this chapter we will calculate the energy distribution for non-
interacting quantum particles, either bosons or fermions. There are
many approaches to doing this. The simplest is to first calculate the
partition function in the grand canonical ensemble. The previous
chapter does this by tracing the density matrix. If we chose as a
base the eigenfunctions of the energy and the number of particles,
the partition function can be written

Z =
∑
r

e−β(Er−µNr), (14.1)

where r denotes a microstate with Nr particles and energy Er.

14.1 Occupation Numbers

Each state is characterized by a wave function given by the product
of a single particle wave function made symmetrical or antisymmet-
rical, depending of whether the particles are bosons or fermions (see
the previous chapter). As a consequence, the fermion particles can-
not be in the same state, while bosons do not have such a constraint.

Each state is in one-to-one correspondence with the occupation
number of each single particle state. Therefore each microstate r can
be labelled by the set of occupation numbers r ≡ {n1, n2, . . . , nj, . . . },
which represents the number of particles in single particle states
1, 2, . . . , j, . . . . The energy Er can then be written in terms of the

232
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energy of a single particle ϵK

Er ≡ En1,n2,... =
∑
j

njϵj. (14.2)

The particle number Nr is given by

Nr ≡ Nn1,n2,... =
∑
j

nj. (14.3)

The partition function (14.1) can therefore be written as

Z =
∑

n1,n2,...

e−β
∑

j(ϵj−µ)nj . (14.4)

For bosons there is no limitation in the particle number, therefore
the sum extends to all values ni = 0, 1, 2, . . . , while for fermions the
sum is limited to the values ni = 0, 1.

In (14.4) the exponential of the sum can be written as the product
of exponentials, therefore

Z =
∏
j

Zj, (14.5)

where
Zj =

∑
nj

e−β(ϵj−µ)nj (14.6)

is the single particle grand-partition function and, according to Eq.
(8.56)

βPV = lnZ =
∑
j

lnZj. (14.7)

The average number of particles in the single particle state j is
given by

⟨nj⟩ =
∑

n1n2...
nje

−β
∑

r(ϵr−µ)nr

Z
=

∑
nj
nje

−β(ϵj−µ)nj

Zj

·
∏

k ̸=j Zk∏
k ̸=j Zk

.

(14.8)
Hence, taking into account (14.6), one has

⟨nj⟩ =
∂ lnZj

∂(βµ)
= z

∂ lnZj

∂z
. (14.9)
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The last expression means that we consider β, z as independent vari-
ables (instead of the usual ones β, µ). The average total number of
constituents is

⟨N⟩ = ∂ lnZ
∂(βµ)

= z
∂ lnZ
∂z

. (14.10)

Now we must calculate explicitely Zj for bosons and fermions.

14.2 Bosons

14.2.1 Particles

The sum in (14.6) is over all values nj = 0, 1, 2, . . . , and since this is
a geometric series, one has

Zj =
∞∑

nj=0

e−β(ϵj−µ)nj =
1

1− eβ(µ−ϵj)
, (14.11)

If the single-particle levels depend only on the wavevector k⃗ and the
energy depends only on k one can also write

Zk⃗ =
∞∑

n
k⃗
=0

e−β(ϵk−µ)n
k⃗ =

1

1− eβ(µ−ϵk)
, (14.12)

If the single-particle levels depend, besides on k⃗, also on other dis-
crete variables s which can take ℓ values, if the energy ϵj does not
depend on s (s-degeneracy), Eq. (14.5) can also be written

Z =
∏
k⃗

∏
s=1,ℓ

Zk⃗s =
∏
k⃗

Zℓ
k⃗

(14.13)

where Zk⃗ on the r.h.s. of Eq. (14.13) is given in Eq. (14.11). This
case is realized, for instance if particles have a spin. Indeed a particle
of spin S may be found in ℓ = 2S+1 spin states labelled by an index
s.

From (14.9) we have

⟨nj⟩ =
1

eβ(ϵj−µ) − 1
, (14.14)

which is called the Bose-Einstein distribution (see Fig. 14.1), and
from (14.7)

lnZ = βpV = −
∑
j

ln
[
1− e−β(ϵj−µ)

]
. (14.15)
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The chemical potential can be obtained by fixing the average
number of particles in the system∑

j

⟨nj⟩ = ⟨N⟩. (14.16)

0 0,2 0,4 0,6 0,8 1
ε

j

<
n j>

/<
n 0>

β=1
β=2
β=5
β=10
β=20
β=50
β=100
β= ∞

Figure 14.1: The Bose-Einstein distribution (14.14) is shown for different tem-
peratures (see key). The chemical potential is µ = −0.5 and the occupation
number is normalized by < n0 > where j = 0 is the state of lower energy ϵ0 = 0.

Let us now consider the large-V limit in which k⃗ and hence ϵ
become continuous variables. Letting ℓ = 1 for simplicity and trans-

forming the sums in Eq. (14.15) into integrals as
∑

j → [V/(2π)3]
∫
dk⃗

one arrives (in d = 3) at

lnZ =
V

λ3
g 5

2
(z), (14.17)

where
z = eβµ (14.18)

is the so called fugacity, the thermal wavelength λ is given in Eq.
(13.59), and g 5

2
(z) = − 4√

π

∫∞
0
x2 ln(1 − ze−x2

) is a special function

which depends only on z. The average energy can be obtained from
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Eq. (14.4) as E = − ∂
∂β

lnZ
∣∣∣
z
. From Eq. (14.17) one has

− ∂

∂β
lnZ

∣∣∣∣
z

=
3

2
β−1 lnZ (14.19)

and hence

pV =
2

3
E. (14.20)

Notice that this result is valid for bosonic, fermionic (as we will see),
and classical (non-interacting) particles.

Bose-Einstein Condensation

Let us re-write Eq. (14.14) as

V −1⟨nj⟩ = V −1 z

eβϵj − z
, (14.21)

where z is given in Eq. (14.18). Since z ≥ 0 and nj ≥ 0 by definition,
it must be z ≤ min eβϵj . In the perfect gases min ϵj = 0 and hence
0 ≤ z ≤ 1. However, z = 1 would be unphysical for any finite V ,
since Eq. (14.21) would imply an infinite number of particles on the
fundamental level n0 with ϵj = 0. However, in certain conditions it
may happen that z → 1 as V → ∞ in such a way that limV→∞ 1−z ∼
V −1. This would imply, through Eq. (14.21), that a finite fraction
of particles would populate the fundamental state, a phenomenon
that is called condensation. Let us state that this is a very peculiar
condition, since in a normal state for V → ∞ the particles are
distributed among the infinite continuous levels, so that the ⟨nj⟩
are all infinitesimal, as it happens for classical particles. Clearly, as
we will see, condensation cannot happen for fermions because the
Pauli principle does not allow to populate states with more than one
particle. In the following we show how condensation occurs for a
boson gas at sufficiently low (but finite) temperatures.

By using Eqs. (14.10,14.17) one has

n =
1

λ3
g 3

2
(z), (14.22)

where n = ⟨N⟩/V is the particle density and g3/2(z) = z(d/dz)g5/2
is another special function. g3/2(z) is plotted in Fig. 14.2. For small
z it is g3/2(z) ≃ z. Increasing z it gets steeper and steeper until
its derivative dg3/2/dz becomes infinite at z = 1, where g3/2(1) ≃
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Figure 14.2: The function g 3
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(z).

2.612 . . . . Since λ ∝ T−1/2, by lowering T one arrives at a critical
temperature Tc where

n =
1

λ3
g 3

2
(1), (14.23)

below which Eq. (14.22) does not admit solution. One then has

Tc =
2πh̄2n

2
3

mk[g 3
2
(1)]

2
3

. (14.24)

What does it happen for T < Tc? Recalling the discussion above,
the only possible answer is that a single level, the fundamental one,
becomes macroscopically populated. Since the behavior of ⟨n0⟩ is
singular, we cannot keep it into the integral which defines the g
functions when passing to the continuum. To keep this into account,
in going from Eq. (14.15) to Eq. (14.17) we must single the term
⟨n0⟩ out of the integral for g3/2(z), thus arriving at

n =
1

λ3
g 3

2
(z) +

1

V

z

1− z
. (14.25)

With Eq. (14.25) one has a solution for any temperature with

⟨n0⟩
V

=


0 , T > Tc

n−
g 3
2
(1)

λ3 = n

[
1−

(
T
Tc

) 3
2

]
, T < Tc

, (14.26)
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(the latter can readily obtained recalling that g 3
2
(1)/[nλ3(Tc)] = 1)

showing that, below Tc, (T/Tc)
3/2 is the fraction of particles contin-

uously distributed among the excited levels. The quantity ⟨n0⟩/V is
plotted in Fig. 14.3. Clearly, we are in the presence of a phase
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T/T
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n 0>

 / 
V

Figure 14.3: The occupation density ⟨n0⟩
V of the fundamental state

transition which resembles the ferro-paramagnetic transition dis-
cussed in chapter 10, and ⟨n0⟩/V has the meaning of the order
parameter. Here, at variance with the magnetic case, there is no
interaction among the particles, and the transition is due to the
symmetry properties of the wavefunctions. The condensation phe-
nomenon on the fundamental state is called Bose-Einstein conden-
sation. Notice that, expanding in Eq. (14.26) for T ≃ Tc one finds
⟨n0⟩/V ≃ [3n/(2Tc)](Tc−T ), and hence one has the critical exponent
β = 1.

One might ask how one passes from the situation with a finite
V , where Eq. (14.22) admits a solution for every temperature and
hence there is no phase-transition, to the case with infinite V where
condensation occurs. Fig. 14.4 shows the graphical solution of Eq.
(14.25), after multiplying both sides times λ3, e.g.

nλ3 = g 3
2
(z) +

λ3

V

z

1− z
. (14.27)
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The second term on the r.h.s. of Eq. (14.27), depicted in green in
the first panel of the figure, diverges in z = 1. The strength of the
divergence is regulated by V −1. Hence, by drawing an horizontal
line (depicted as dashed brown) it will intercept the green curve at a
value of z whose distance from z = 1 is of order 1− z ∼ V −1. Since
g 3

2
(z) (depicted in blue) does not diverge, the same property is shared

also by the whole r.h.s. (depicted in red) of Eq. (14.27). Notice that
the graphical solution of Eq. (14.27) can be obtained precisely with
the same technique, namely by drawing an horizontal line at height
nλ3 and finding the proper value of z from the intercept with the red
line. Increasing nλ3 starting from zero also z increases, initially in
a linear way, as shown in the second panel of Fig. 14.4. According
to the previous discussion, when nλ3 is of order g 3

2
(1) ≃ 2.612 the

solution z is at a distance V −1 from z = 1. If V is rigorously infinite,
the curve for the solution z becomes discontinuous in nλ3 = g 3

2
(1).

Now we study the equation of state (14.17). Also in this case
below Tc one should single out the term with k = 0 from the integral.
However it can be shown that it does not contribute to the equation
of state. Hence one has

βp =

{
λ−3g 5

2
(z) , T > Tc

λ−3g 5
2
(1) , T < Tc

. (14.28)

Notice that p depends on n, and hence on V , through z (see Eq.
(14.22) above Tc but becomes independent on V for T < Tc. The
graphical solution of this equation is presented in Fig. 14.5. One
clearly sees the phenomenon of phase coexistence, analogously to
what observed in the gas-liquid transition. The independence of p
on the volume is the analogue of the Maxwell construction for the
gas-liquid transition. The two phases here are the normal phase,
where the population of the quantum levels is distributed, and the
condensed one with the macroscopic occupation of the fundamental
state.

Let us consider now the internal energy. Combining Eqs. (14.20)
and (14.28) one obtains

E =
3N

2nβλ3
·
{
g 5

2
(z) , T > Tc

g 5
2
(1) , T < Tc

(14.29)

For large T , when z → 0, one can use (but we do not do it explicitly
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Figure 14.4: Graphical solution of Eq. (14.27). The distance of the red and
green lines from z = 1 are of order V −1.

here) the known small z behavior of g5/2 obtaining

E =
3

2
NkT, (14.30)

namely the equipartition theorem. Indeed, for large T the par-
ticles behave as classical ones. In the opposite limit, from Eq.
(14.29) one directly reads E ∝ (kT )5/2, namely CV ∝ T 3/2 in the
whole low-temperature phase T < Tc. In this phase the entropy
S =

∫
dT (CV /T ) goes to zero as T 3/2 as the absolute zero is ap-

proached, in agreement with the third principle of Thermodynamics.
The behavior of the specific heat is shown in Fig. 14.6. It raises as
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T 3/2 for low temperatures and then forms a cusp at the transition
(which in fact is also called λ-point, due to the shape of CV ), and
then converge to the Dulong-Petit law for large T .

It has been suggested that this transition is the basic mechanism
for the superfluid transition in liquid helium. There are two isotopes
of helium: 4He and 3He. An atom of 4He has two protons and two
neutrons, has an integer spin, and therefore is a boson. 4He below
a critical temperature Tc ≃ 2.18oK exhibits such unusual properties
as an absence of viscosity when it flows through a capillary. That is
why it is called a superfluid. At Tc there is a weak (logarithmic) di-
vergence of CV . Although the Bose condensation considered insofar
applies to a noninteracting Bose gas, it has been suggested that also
in the case of liquid helium made of interacting bosons, the Bose
condensation is still present and the superfluid transition has been
attributed to the Bose condensation phenomenon. The interaction
is responsible for the discrepancies between the theoretical estimate
of the critical temperature Tc = 3.14oC and the observed one, of
the different behavior of CV and other quantitative properties, but
at a qualitative level the phenomenon is described by the perfect
gas treatment discussed insofar. A confirmation of this suggestion
comes from the observation that liquid 3He, which has spin 1/2 and
is a fermion but chemically is the same as 4He, does not possess
the same superfluid properties as 4He. In the same way, as we will
see, also bosons with a non-conserved number, such as photons and
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phonons do not condense, because they can instead annihilate.

14.2.2 Photons

The Hamiltonian of the electromagnetic field can be expanded in
plane waves of different frequencies. After quantization one is left
with a collection of bosons with no mass and spin 1. An important
difference with the case of real particles is that the number of pho-
tons is not conserved. This means that µ = 0. Each photon has
2 possible polarization states (there are 3 polarization states for a
spin 1 particle but the transverse condition, e.g. for the electric field
∇⃗ · E⃗ = 0, reduces the degrees of freedom to 2), and hence ℓ = 2.

The energy of a photon of momentum h̄k⃗ is

ϵk = h̄c|k|. (14.31)

When the radiation is contained in a box of volume V , boundary
conditions imply Eq. (13.52). The electromagnetic radiation in equi-
librium inside a box at temperature T is called the black body radi-
ation. Experimentally one can observe it by studying the radiation
emitted from a small hole in the box.

Since the energy of the photon does not depend on the polar-
ization state, one has Eq. (14.11) with µ = 0. Hence, proceeding
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similarly to Eq. (14.8) instead of Eq. (14.9) one finds

⟨nk⃗⟩ = 2
∂ lnZk⃗

∂(βµ)

∣∣∣∣
µ=0

=
2

eβϵk − 1
. (14.32)

Moreover
lnZ = βpV = −2

∑
k⃗

ln
[
1− e−βϵk

]
. (14.33)

Recalling that µ = 0, the average energy can be evaluated from
Eq. (14.4) as E = − ∂

∂β
lnZ|z, which provides

E =
∑
k⃗

ϵk⟨nk⃗⟩ (14.34)

with a very transparent meaning. From Eq. (14.7) one also has

βp =
∂ lnZ
∂V

= −2
∑
j

βe−βϵk ∂ϵk
∂V

1− e−βϵk
=

β

3V

∑
k⃗

ϵk⟨nk⃗⟩, (14.35)

where in the last passage we have used Eqs. (13.52) and (14.31).
Hence one arrives at

pV =
1

3
E, (14.36)

which should be compared with Eq. (14.20) which is valid for parti-
cles.

Let us now consider the large-V limit in which k⃗ and hence ϵ
become continuous variables. Transforming the sums in Eq. (14.34)

into integrals as done for the particles (
∑

k⃗ → [V/(2π)3]
∫
dk⃗) one

arrives at

E =
V

(2π)3

∫ ∞

0

dk4πk2
2h̄ck

eβh̄ck − 1
=

=
V

π2(h̄c)3β4

∫ ∞

0

dx
x3

ex − 1
=
π2

15
V
(kT )4

(h̄c)3
. (14.37)

This is the well known Stephan-Boltzman law of the black body ra-
diation, according to which the energy emitted is proportional to the
fourth power of the temperature. Notice that the equipartition the-
orem is not recovered even in the large T limit, because the number
of degrees of freedom is not fixed. Writing the argument of the last
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integral in Eq. (14.37) in terms of the frequency ω = h̄−1ϵ one gets
the celebrated Planck’s law

u(ω, T ) =
h̄

π2c3
ω3

eβh̄ω − 1
dω (14.38)

for the black body energy density in an interval dω around the fre-
quency ω. This law is in excellent agreement with the experimental
results, providing also one of the first accurate proofs of the absence
of mass of the photons.

14.2.3 Phonons

At low temperatures the interaction Hamiltonian among theN atoms
of a cristal can be linearized and takes the form of a collection of
coupled harmonic oscillators. Upon diagonalization one obtains 3N
one-dimensional independent oscillators, the so called normal modes.
After quantization one is left with a collection of independent spin
1 bosons, the phonons. The situation is similar to that of photons,
except that there are now 3 polarization states (since there is no
transverse condition for the sound waves), so ℓ = 3. The other
major difference is that there are a number 3N of energies for the
phonons, whereas this constraint was not present for photons. Gen-
erally speaking, the relation between the wavevector and the energy
can be much more complicated than Eq. (14.31). Assuming that Eq.
(14.31), with c the speed of sound in an isotropic solid, is a reasonable
approximation (this dispersion relation is the one obtained for the
so-called acustic phonons far from the boundaries of the Brilluin’s
zone) one can proceed as for photons, thus obtaining Eq. (14.11)
with µ = 0. Then

⟨nk⃗⟩ =
3

eβϵk − 1
, (14.39)

and
lnZ = βpV = −3

∑
k⃗

ln
[
1− e−βϵk

]
. (14.40)

Following exactly the same passages as done for the photons one
arrives to Eq. (14.36) also for the phonons. The energy can be
written analogously to Eq. (14.37), with the difference that the
integral does not extend from 0 to ∞ but only from 0 to ϵM = ϵjM ,
because there is a finite number (3N) of possible energies. ϵM is
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determined by the condition

jM∑
j=0

1 = 3N, (14.41)

or, in the continuum limit

3N =
3V

(2π)3

∫ kM

0

dk4πk2 =
3V

2π2(h̄c)3

∫ ϵM

0

ϵ2dϵ =
V

2π2(h̄c)3
ϵ3M ,

(14.42)
so that

ϵM = h̄c

(
6π2N

V

) 1
3

(14.43)

Hence, proceeding as in Eq. (14.37) one has

E =
3V

2π2(h̄c)3β4

∫ βϵM

0

dx
x3

ex − 1

=
9(kT )4N

ϵ3M

∫ βϵM

0

dx
x3

ex − 1
. (14.44)

This is the Debye formula which describes the energy and the specific
heat of a solid. The quantity TD defined by kTD = ϵM , the Debye
temperature, is the characteristic temperature which separates the
low and high temperature behaviors with

E =

{
3NkT , T ≫ TD
3
5
π4N

(
T
TD

)3
kT , T ≪ TD

(14.45)

The first expression is obtained for T ≫ TD by expanding the ex-
ponential ex ≃ 1 + x in Eq. (14.44). The second expression is
obtained by letting the upper intergration limit equal to ∞ (since
the integrand goes exponentially fast to zero for large x) so that
the integral becomes a constant (it can be shown that this constant
equals π4/15). Notice that at high temperatures the systems behaves
classically and obeys the equipartition principle (recall Eq. (14.41),
namely that there are 3N normal modes, each with two quadratic
degrees (position and momentum)). However, for extremely high
temperatures the model of non-interacting bosons breaks down be-
cause phonons become interacting and the solid may eventually melt.
The specific heat CV = ∂E/∂T is plotted in Fig. 14.7. For most
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solids TD ≃ 200oK. This is why the Dulong and Petit law is usually
observed at room temperatures. For low temperatures the specific
heat of the solid goes to zero as T 3, a fact that is observed at low
temperatures in solids. For extremely low temperatures, however,
the specific heat is dominated by the fermionic term due to the elec-
trons which, as we will see in Sec. 14.3.1 goes linearly in T . The
entropy S =

∫
dT (CV /T ) goes to zero as T 3 as the absolute zero

is approached, in agreement with the third principle of Thermody-
namics.

0 1 2
T / T

D

0

0,2

0,4

0,6

0,8

1

C
V

  / 
3N

k

Dulong - Petit

~T
3

Figure 14.7: The specific heat in the Debye theory, as a function of temperature.

14.3 Fermions

Let us consider now fermions. The sum in (14.6) is limited only to
values nj = 0, 1; therefore,

Zj = 1 + e−β(ϵj−µ). (14.46)

From (14.9) we have

⟨nj⟩ =
1

eβ(ϵj−µ) + 1
, (14.47)
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which is called the Fermi-Dirac distribution (see Fig. 14.8), and from
(14.7)

lnZ = βpV =
∑
j

ln
[
1 + e−β(ϵj−µ)

]
. (14.48)

The chemical potential is obtained as in Eq. (14.16).

14.3.1 Particles

The energy spectrum is ϵ(K⃗) = h̄2K2/(2m). Moreover, for particles
of spin s each state has a degeneracy ℓ = 2s+ 1 due to two possible
spin configurations. If N is the number of particles, the chemical
potential is given by

N = ℓ
∑
k⃗

f [ϵ(K⃗)] =
ℓV

(2π)3

∫
f [ϵ(K⃗)]dK⃗, (14.49)

where < nj >= f(ϵ) is the Fermi distribution (14.47), namely

f(ϵ) =
1

eβ(ϵ−µ) + 1
, (14.50)

and using (14.6) we have transformed the sum into an integral. By
integrating over the angle and then changing variableK = (

√
2m/h̄)

√
ϵ,

we have

N =
ℓV

2π2

∫ ∞

0

K2f [ϵ(K⃗)]dK =
(2m)3/2ℓV

4π2h̄3

∫ ∞

0

ϵ1/2f(ϵ)dϵ. (14.51)

In the limit T → 0, the Fermi distribution becomes a step function
(see Fig. 14.8). If ϵ > ϵf , then f(ϵ) = 0; if ϵ < ϵf , then f(ϵ) = 1,
where ϵf = µ(T = 0) is the chemical potential at T = 0 and is called
the Fermi energy. At T = 0 therefore the particles fill one by one all
the available states until they reach the maximum energy ϵf . From
(14.51) we have

N =
(2m)3/2V

3π2h̄3
ϵ
3/2
f , (14.52)

which relates the density N/V to the Fermi level. For higher tem-
perature, the Fermi distribution becomes a smooth function going
from one to zero around the Fermi energy in a range of energy of the
order kBT (see Fig. 14.8).
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Figure 14.8: The Fermi-Dirac distribution (14.47) is shown for different temper-
atures (see key). The chemical potential is µ = 0.5.

Transforming the sums in Eq. (14.48) into integrals similarly to
what done for bosonic particles one arrives at

lnZ =
V

λ3
f 5

2
(z), (14.53)

with the special function f 5
2
(z) = 4√

π

∫∞
0
x2 ln(1+ze−x2

). Proceeding

as for bosons one arrives at Eq. (14.20) also for fermions.
We want to calculate now the contribution of the electrons to the

specific heat of a metal. To a good approximation, the electrons
in the conduction band – those that conduct electricity – can be
considered free. Let us calculate now the average energy. This can
be obtained proceeding as for the average particle number N , thus
arriving to an equation as Eq. (14.51) with an extra ϵ under the
integral

E = A

∫ ∞

0

ϵ3/2f(ϵ)dϵ, (14.54)

where

A =
(2m)3/2V

2π2h̄3
, (14.55)

and we have used ℓ = 2 for electrons. Integrating by parts in Eq.
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(14.54) one has

E = −2

5
A

∫ ∞

0

ϵ
5
2
df(ϵ)

dϵ
dϵ = −2

5
Aβ− 5

2

∫ ∞

−βµ

(x+ βµ)
5
2
df(x)

dx
dx,

(14.56)
where we have introduced the variable x = β(ϵ − µ). For small
temperatures df(x)/dx is sharply peaked around x = 0, since f tends
to a step-function. Hence we can expand (x+βµ)5/2 and extend the
integration from −∞ to ∞, thus obtaining

E = −2

5
Aβ− 5

2

∫ ∞

−∞

[
(βµ)

5
2 +

15

4
(βµ)

1
2x2 + . . .

]
df(x)

dx
dx, (14.57)

where we have neglected the term proportional to x since df(x)/dx =
−(1/4) cosh−2(x/2) is a symmetric function. Using Eq. (14.20) we
find

pV ≃ − 4

15
Aµ

5
2

∫ ∞

−∞

df(x)

dx
dx. (14.58)

This shows that the pressure does not go to zero when T → 0. This
purely quantum phenomenon is due to the Pauli principle accord-
ing to which only two particles (with opposite spin) can have zero
momentum; the other contribute to the pressure.

The specific heat CV is given by

CV =
∂E

∂T
= BkT, (14.59)

where B = −(3/2)Aµ1/2k
∫∞
−∞ dx x2df(x)/dx. This result has a sim-

ple interpretation. We have already noticed that the Fermi distribu-
tion goes from 1 to zero around the Fermi energy in a range of energy
of the order kBT (see Fig. 14.8). Only the fraction of electrons in
this range can contribute to the specific heat, since the others at
lower energy cannot be excited. In fact, consider an electron at very
low energy ϵ. If this electron receives a small amount of energy ∆ϵ
from the external bath, the electron will change its state from ϵ to
ϵ+∆ϵ only if the state with energy ϵ+∆ϵ is not occupied, otherwise
it must remain frozen in its state. Only electrons near the edge of the
distribution, which are in number proportional to kT can contribute
to the specific heat and this explains a specific heat going linearly
with kT at low temperatures, i.e. Eq. (14.59).
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14.4 Classical limit

Notice that for any kind of quantum non-interacting system consid-
ered insofar, in the classical limit in which ⟨nj⟩ ≪ 1, so that there
are much more states than particles (which can be realized by raising
the temperature and/or lowering the density) one obtains

⟨nj⟩ ≃ ℓe−β(ϵj−µ), (14.60)

where ℓ = 1, 2, 3 for bosonic particles, photons and fermionic parti-
cles, and phonons respectively. From ⟨N⟩ =

∑
j⟨nj⟩ one obtains

eβµ =
⟨N⟩

ℓ
∑

j e
−βϵj

, (14.61)

so that the classical result

⟨nj⟩
⟨N⟩

=
e−βϵj∑
j e

−βϵj
(14.62)

is obtained. What does this expression means? In the classical limit
the energetic levels become a continuum. In this case in order to
have a probability ∝ e−βEr for the system’s states r it is sufficient to
fill the single particle states in such a way that an average number
∝ e−βϵj of particles occupy a level of energy ϵj. However, when the
discrete nature of the levels becomes important this simple receipt
does not work and the distributions (14.14,14.47) are found.



Appendix A

Binomial coefficient

We ask how many ways CN(n) there are to arrange N objects (say
balls) of which n are of one type (say red) and the others are of a
different type (say white), assuming that particles of the same color
are indistinguishable. There are N ways to chose the first particle,
N − 1 to chose the second and so on. Then the number of possible
choices is N !. However, many of these dispositions are equivalent,
since particles are indistinguishable (this means that we do not want
to count as different two dispositions which, e.g., can be obtained
one from the other by exchanging two particles of the same color).
Then we must divide N ! times the number of possible dispositions
of the two kind of colored balls. Reasoning as before, there are n!
ways of exchanging the red balls, and (N − n)! ways of exchanging
the white ones. Hence the number of ways to arrange the N balls is

CN(n) =
N !

n!(N − n)!
. (A.1)

This number is also indicated as

(
N
n

)
, and is denoted as binomial

coefficient. The name comes from the fact that the same quantity
appears also in the binomial expansion

(p+ q)N =
N∑

n=0

(
N
n

)
pnqN−n. (A.2)
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Appendix B

Gaussian integrals

In one dimension:

1

(2πσ)1/2

∫ ∞

−∞
dx e−

x2

2σ = 1 (B.1)

1

(2πσ)1/2

∫ ∞

−∞
dx x2e−

x2

2σ = σ2 (B.2)

In d dimensions (r⃗ ≡ (x1, . . . , xd)):

1

(2πσ)d/2

∫ ∞

−∞
dr⃗ e−

r2

2σ = 1 (B.3)

1

(2πσ)d/2

∫ ∞

−∞
dr⃗ r2e−

r2

2σ = d σ2 (B.4)∫ ∞

−∞
dr⃗ e−

r2

2σ
+ir⃗·y⃗ = e−

σy2

2 (2πσ)
d
2 . (B.5)

This integral can be done by writing the exponent as −r2/(2σ)+ ir⃗ ·
y⃗ = −{r⃗ − [i/(2a)]y⃗}2/(2σ) − σy2/2 which transforms the integral
(B.5) into a standard Gaussian integral of the type (B.3).
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Appendix C

Stirling’s approximation

Stirling’s approximation formula states that

lnN ! ≃ N lnN −N, (C.1)

for large N . In order to prove it is sufficient to observe that

lnN ! = ln 1 + ln 2 + · · ·+ lnN ≃
∫ N

1

lnxdx = [x lnx− x]N1 =

= N lnN −N + 1, (C.2)

where the passage from the sum to the integral is the trapezium
rule approximation. The approximation is good for large N since
the integral is dominated from the region around the upper extreme
where, for large N , the logarithm varies so slowly to allow an unitary
integration step. The rough derivation presented above correctly
reproduces the first two term in the large-N expansion (the +1, as
we will see, is not correct), the so called weak form of the Stirling
approximation, Eq. (C.1), which is sufficient for most purposes.
Evaluating with different techniques also the next subleading term
leads to the strong form of Stirling approximation

lnN ! ≃ N lnN −N + ln
√
2πN. (C.3)
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Appendix D

Lagrangian multipliers

Suppose we have a function f({xi}) of the n variables xi (i = 1, n).
We want to maximize f with a certain constraint g({xi}) = 0. Let
us consider the loci

f({xi}) = d (D.1)

and
g({xi}) = 0 (D.2)

for various values of the constant d. Suppose n = 2, so that these
loci are contour lines. Imagine to walk along the contour line of
g. In general the contour lines of g and f are distinct, so moving
along the contour line for g while g remains constant (by definition
of contour line) the value of f vary. Only when the contour line for
g meets the contour line of f tangentially also f does not change,
which means that it is at stationarity point (maximum, minimum,
or saddle point). The contour lines of f and g are tangent when the
tangent vectors of the contour lines are parallel. Since the gradient
of a function is perpendicular to the contour lines, this is the same
as saying that the gradients of f and g are parallel. Thus we want
points where (D.2) is satisfied and

∇f({xi}) = −λ∇g({xi}), (D.3)

To incorporate these conditions into one equation, we introduce an
auxiliary function, the Lagrangian, as

Λ({xi}, λ) = f({xi}) + λg({xi}) (D.4)

and solve
∇Λ({xi}, λ) = 0, (D.5)
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where now the gradient is taken with respect to all the n+1 variables
of Λ({xi}, λ), or equivalently

∂Λ({xi}, λ)
∂xi

= 0 , i = 1, . . . n

∂Λ({xi}, λ)
∂λ

= 0.

(D.6)

This is the method of Lagrange multipliers. Note that the second of
Eqs. (D.6) implies Eq. (D.2). The method can be easily generalized
to the case of m constraints

gk({xi}) = 0 , k = 1, . . . ,m, (D.7)

by introducing the Lagrangian

Λ({xi}, {λk}) = f({xi}) +
m∑
k=1

λkgk({xi}) (D.8)

and requiring
∇Λ({xi}, {λk}) = 0, (D.9)

where now the gradient is taken with respect to all the n+m variables
of Λ({xi}, {λk}), or equivalently

∂Λ({xi}, {λk})
∂xi

= 0 , i = 1, . . . n

∂Λ({xi}, {λk})
∂λk

= 0 , k = 1, . . .m
. (D.10)



Appendix E

General solution of first
order linear differential
equations

Let us write consider the equation

dv⃗

dt
= − v⃗

τ
+ a⃗(t). (E.1)

Multiplying both members of (E.1) by e(t−t0)/τ , where t0 < t is a
generic time, it follows that

d

dt

[
v⃗e(t−t0)/τ

]
= a⃗(t)e(t−t0)/τ . (E.2)

Changing symbol t → t1 and integrating on t1 between t0 and t we
obtain

v⃗e(t−t0)/τ = v⃗(t0) +

∫ t

t0

a⃗(t1)e
(t1−t0)/τdt1, (E.3)

from which the general solution reads

v⃗ = v⃗(t0)e
−(t−t0)/τ + e−t/τ

∫ t

t0

a⃗(t1)e
t1/τdt1. (E.4)
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Appendix F

Solution of inhomogeneous
second order linear
differential equations

Let us consider the equation

d2y

dt2
+

1

τ

dy

dt
= f (F.1)

The homogeneous equation (with f = 0) has general solution

yhom(t) = y1e
−t/τ , (F.2)

where y1 is a constant. A particular solution of Eq. (F.1) is

yp(t) = fτt+ y2, (F.3)

with f2 another constant. The general solution of Eq. (F.1) is ob-
tained as

y(t) = yhom(t) + yp(t). (F.4)

The two constant are fixed by the initial conditions y(0) = y0 and
dy/dt|t=0 = ẏ0, yielding{

y1 = fτ 2 − ẏ0τ
y2 = y0 − fτ 2 − ẏ0τ.

(F.5)
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