Disorder-induced rounding of the phase transition

in the large-q-state Potts model

M.T. Mercaldo Università di SalernoJ-C. Anglès d'Auriac CNRS - GrenobleF. Iglói SZFKI - Budapest

Motivations

- CRITICAL PROPERITES OF DISORDERED SYSTEMS
- EFFECTS OF DISORDER ON FIRST ORDER PHASE TRANSITIONS
- \Rightarrow Random Bond Potts Model (RBPM), especially in the large-q-limit, is a perfect ground to analize this aspect

- CRITICAL PROPERITES OF DISORDERED SYSTEMS
- EFFECTS OF DISORDER ON FIRST ORDER PHASE TRANSITIONS
- \Rightarrow Random Bond Potts Model (RBPM), especially in the large-q-limit, is a perfect ground to analize this aspect

- POTTS MODEL IN THE RANDOM CLUSTER REPRESENTATION
- INTRODUCING DISORDER
- RESULTS AND PERSPECTIVES

q-state Potts model

$$Z \equiv \sum_{\{\sigma\}} q^{-\beta \mathcal{H}(\{\sigma\})}$$

$$\mathcal{H} = -\sum_{\langle i,j \rangle} J_{ij} \delta(\sigma_i, \sigma_j) \quad \sigma_i = 0, 1, \cdots, q-1$$

$$J_{ij} \text{ FM random couplings}$$

$$\bigcup$$
Random cluster representation

$$Z = \sum_{G \subseteq E} q^{c(G)} \prod_{ij \in G} \nu_{ij} \qquad \nu_{ij} = e^{\beta J_{ij}} - 1$$

c(G) = 10 + 12 = 22

7

$$\begin{array}{c} \hline q < q_c \Rightarrow \hline 2^{nd} \text{ order PT} \\ \hline q > q_c \Rightarrow \hline 1^{st} \text{ order PT} \end{array}$$

Congresso del Dipartimento di Fisica "E.R. Caianiello" – 19-20 Aprile 2004, Salerno.

RBPM in the large-*q* **limit** M.T. Mercaldo, J-C. Anglès d'Auriac, F. Iglói

7

$$\begin{array}{c} q < q_c \\ \hline q > q_c \end{array} \Rightarrow \begin{array}{c} 2^{nd} \text{ order PT} \\ \hline q > q_c \end{array} \Rightarrow \begin{array}{c} 1^{st} \text{ order PT} \end{array}$$

in 2D: $q_c=4$ (exact result) in the $q\to\infty$ limit the PT is strongly 1^{st} order

Congresso del Dipartimento di Fisica "E.R. Caianiello"- 19-20 Aprile 2004, Salerno.

7

in 2D: $q_c = 4$ (exact result)

in the $q \to \infty$ limit

the PT is strongly 1^{st} order

Systems with Disorder

Continuous PT

HARRIS criterion

 $\alpha_P > 0$ disorder is **relevant**

 $\alpha_P < 0$ disorder is **irrelevant**

 1^{st} order PT

∄ criterion

it is only known that DISORDER

will SOFTEN the transition

in 2D: $q_c = 4$ (exact result)

in the $q \to \infty$ limit

the PT is strongly 1^{st} order

Systems with Disorder

Continuous PT

HARRIS criterion

 $\alpha_P > 0$ disorder is **relevant**

 $\alpha_P < 0$ disorder is **irrelevant**

 1^{st} order PT

∄ criterion

it is only known that DISORDER

will SOFTEN the transition

Relevant disorder

Conventional Random FP (different values of critical exponents)

Infinite Randomness FP (IRFP) (disorder grows without limits)

$$T \to T' = T \ln q \qquad \qquad f(T) \to \frac{f(T')}{\ln q}$$
$$\left(\begin{aligned} Z &= \sum_{G \subseteq E} q^{c(G)} \prod_{ij \in G} \left[q^{\beta J_{ij}} - 1 \right] \\ \downarrow_{q \to \infty} \end{aligned} \right)$$
$$U_{q \to \infty}$$
$$\left(\begin{aligned} Z &= \sum_{G \subseteq E} q^{\phi(G)} \\ \phi(G) &= c(G) + \beta \sum_{ij \in G} J_{ij} \\ ij \in G \end{aligned} \right)$$

$$Z = n_0 q^{\phi^*}(1 + \ldots)$$
 where $\phi^* = \max_G \phi(G)$ and $\phi^* = -\beta N f$

- Thermal Properties are Calculated from ϕ^*

- Thermal Properties are Calculated from ϕ^*

 \rightarrow free energy, internal energy, specific heat,...

- Thermal Properties are Calculated from ϕ^*

 \rightarrow free energy, internal energy, specific heat,...

MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM THE GEOMETRICAL STRUCTURE OF G^*

9

- Thermal Properties are Calculated from ϕ^*

 \rightarrow free energy, internal energy, specific heat,...

MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM THE GEOMETRICAL STRUCTURE OF G^*

 $\rightarrow C(r)$, average correlation function, is related to the distribution of clusters

- Thermal Properties are Calculated from ϕ^*

 \rightarrow free energy, internal energy, specific heat,...

MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM THE GEOMETRICAL STRUCTURE OF G^*

 $\rightarrow C(r)$, average correlation function, is related to the distribution of clusters

 $\rightarrow m$, magnetization, is the fraction of sites in the *infinite* cluster

9

\blacksquare Thermal Properties are Calculated from ϕ^*

 \rightarrow free energy, internal energy, specific heat,...

MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM THE GEOMETRICAL STRUCTURE OF G^*

- $\rightarrow C(r)$, average correlation function, is related to the distribution of clusters
- $\rightarrow m$, magnetization, is the fraction of sites in the *infinite* cluster
- $\rightarrow \xi$, correlation lenght, is the average size of the clusters

10

• One has to find the max over the $2^{|E|}$ possible configuration !

- One has to f ind the max over the $2^{|E|}$ possible configuration !
- ϕ^* is a supermodular function $\Rightarrow \phi(A) + \phi(B) \le \phi(A \cup B) + \phi(A \cap B) \quad \forall A, B \in E$

- One has to f ind the max over the $2^{|E|}$ possible configuration !
- ϕ^* is a supermodular function $\Rightarrow \quad \phi(A) + \phi(B) \leq \phi(A \cup B) + \phi(A \cap B) \quad \forall A, B \in E$
- theorem of discrete math $\Rightarrow \exists$ a combinatorial optimization method to maximize it in polynomial time

10

- One has to find the max over the $2^{|E|}$ possible configuration !
- ϕ^* is a supermodular function $\Rightarrow \phi(A) + \phi(B) \le \phi(A \cup B) + \phi(A \cap B) \quad \forall A, B \in E$
- theorem of discrete math $\Rightarrow \exists$ a combinatorial optimization method to maximize it in polynomial time
- for $\phi(G)$ of the Potts model a specific algorithm has been formulated Angles d'Auriac *et al.*JPA**35**, 6973 (2002)

- One has to f ind the max over the $2^{|E|}$ possible configuration !
- ϕ^* is a supermodular function $\Rightarrow \phi(A) + \phi(B) \le \phi(A \cup B) + \phi(A \cap B) \quad \forall A, B \in E$
- theorem of discrete math $\Rightarrow \exists$ a combinatorial optimization method to maximize it in polynomial time
- for $\phi(G)$ of the Potts model a specific algorithm has been formulated Angles d'Auriac *et al.*JPA**35**, 6973 (2002)

$$d = 2$$
 $L = 512$ \Rightarrow $2^{524288} \sim 2.6 \cdot 10^{157826}$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.200$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.066$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.050$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.042$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.035$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.025$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.016$$

Congresso del Dipartimento di Fisica "E.R. Caianiello"- 19-20 Aprile 2004, Salerno.

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.008$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 1.000$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 0.992$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 0.983$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 0.967$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 0.9416$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 0.667$$

$$P(J) = \frac{1}{2}\delta\left(J - \frac{1}{6}\right) + \frac{1}{2}\delta\left(J - \frac{5}{6}\right) \qquad T = 0.500$$

28

IN 2D DISORDER DESTROY PHASE COEXISTENCE \Rightarrow it softens the 1^{st} order PT into a 2^{nd} order PT

- IN 2D DISORDER DESTROY PHASE COEXISTENCE \Rightarrow it softens the 1^{st} order PT into a 2^{nd} order PT
- IN 3D WEAK DISORDER DOES NOT DISTROY PHASE COEXISTENCE i.e. disorder has to be strong enough to soften the PT into 2nd order PT

- IN 2D DISORDER DESTROY PHASE COEXISTENCE \Rightarrow it softens the 1^{st} order PT into a 2^{nd} order PT
- IN 3D WEAK DISORDER DOES NOT DISTROY PHASE COEXISTENCE i.e. disorder has to be strong enough to soften the PT into 2nd order PT

- IN 2D DISORDER DESTROY PHASE COEXISTENCE \Rightarrow it softens the 1^{st} order PT into a 2^{nd} order PT
- IN 3D WEAK DISORDER DOES NOT DISTROY PHASE COEXISTENCE i.e. disorder has to be strong enough to soften the PT into 2^{nd} order PT

- IN 2D DISORDER DESTROY PHASE COEXISTENCE \Rightarrow it softens the 1^{st} order PT into a 2^{nd} order PT
- IN 3D WEAK DISORDER DOES NOT DISTROY PHASE COEXISTENCE i.e. disorder has to be strong enough to soften the PT into 2nd order PT

- IN 2D DISORDER DESTROY PHASE COEXISTENCE \Rightarrow it softens the 1^{st} order PT into a 2^{nd} order PT
- IN 3D WEAK DISORDER DOES NOT DISTROY PHASE COEXISTENCE i.e. disorder has to be strong enough to soften the PT into 2nd order PT

In a finite size system weak disorder fluctuation could not be sufficient to break phase coexistence

Through extreme value statistics one can estimates the breaking length scale $L \sim \exp[(1/\delta)^2]$ [the finite length scale L at which breaking of phase coexistence take place]

strenght of disorder $\delta=\Delta/J$

Through extreme value statistics one can estimates the breaking length scale $L \sim \exp[(1/\delta)^2]$ [the finite length scale L at which breaking of phase coexistence take place]

strenght of disorder $\delta=\Delta/J$

Through extreme value statistics one can estimates the breaking length scale $L \sim \exp[(1/\delta)^2]$ [the finite length scale L at which breaking of phase coexistence take place]

strenght of disorder $\delta=\Delta/J$

Free Energy:
$$F=c(G^*)T-\sum_{ij\in G^*}J_{ij}$$
 Internal Energy: $E=-\sum_{ij\in G^*}J_{ij}$

For a given sample E is a piecewise costant function of temperature \Rightarrow it shows discontinuities

- The average over disorder generally smears out discontinuities
- The behavior of averaged quantities is different for the discrete and the continuous distributions

Congresso del Dipartimento di Fisica "E.R. Caianiello"- 19-20 Aprile 2004, Salerno.

At the critical point the largest cluster of G^* is a fractal and its mass $M \sim L^{d_f}$

$$d_f = d - rac{eta}{
u} \qquad d_f = rac{5 + \sqrt{5}}{4}$$

According to scaling theory, cumulative distribution of the mass of the cluster

$$R(M,L) = M^{-\tau} \tilde{R}(M/L^{d_f})$$

Congresso del Dipartimento di Fisica "E.R. Caianiello"- 19-20 Aprile 2004, Salerno.

RESULTS IN 2D

$$\Rightarrow \alpha = 0, \beta = \frac{3 - \sqrt{5}}{4}, \nu = 1$$
 as for the RTIM \Rightarrow IRFP $\,!$

 \rightarrow We can argue that the RTIM is the Hamiltonian version of the 2D RBPM in the large-q limit

Ref.: Mercaldo, Anglès d'Auriac, Iglói, PRE 69, 0461xx (2004);

Anglès d'Auriac, Iglói PRL 90, 190601 (2003)

Conclusions

RESULTS IN 2D

 $\Rightarrow \alpha = 0, \beta = \frac{3 - \sqrt{5}}{4}, \nu = 1$ as for the RTIM \Rightarrow IRFP $\,!$

→ We can argue that the RTIM is the Hamiltonian version of the 2D RBPM in the large-q limit Ref.: Mercaldo, Anglès d'Auriac, Iglói, PRE 69, 0461xx (2004);

Anglès d'Auriac, Iglói PRL 90, 190601 (2003)

■ QUESTIONS IN 3D

- $\rightarrow\,$ is the transition line $T_c/d=1$ for $\delta\ll 1$?
- $\rightarrow\,$ is $\delta=1/2$ the tricritical point ?
- \rightarrow does the critical line depend on the disorder distribution ?

Ref.: Anglès d'Auriac, Iglói, Mercaldo work in progress

Conclusions

RESULTS IN 2D

 $\Rightarrow \alpha = 0, \beta = \frac{3 - \sqrt{5}}{4}, \nu = 1$ as for the RTIM \Rightarrow IRFP $\, !$

 \rightarrow We can argue that the RTIM is the Hamiltonian version of the 2D RBPM in the large-q limit

Ref.: Mercaldo, Anglès d'Auriac, Iglói, PRE 69, 0461xx (2004);

Anglès d'Auriac, Iglói PRL 90, 190601 (2003)

■ QUESTIONS IN 3D

- $\rightarrow\,$ is the transition line $T_c/d=1$ for $\delta\ll 1$?
- $\rightarrow\,$ is $\delta=1/2$ the tricritical point ?

 \rightarrow does the critical line depend on the disorder distribution ?

Ref.: Anglès d'Auriac, Iglói, Mercaldo work in progress

RELATED PROBLEM

Critical Properties of Quantum Potts model Ref.: Mercaldo, De Cesare, work in progress