Disorder-induced rounding of the phase transition
in the large-q-state Potts model

M.T. Mercaldo, Università di Salerno
J-C. Anglès d’Auriac, CNRS - Grenoble
F. Iglói, SZFKI - Budapest
Motivations

- **Critical Properites of Disordered Systems**
- **Effects of Disorder on First Order Phase Transitions**
- \(\Rightarrow \) **Random Bond Potts Model (RBPM), especially in the large-\(q \)-limit, is a perfect ground to analyze this aspect**
Motivations

- Critical properites of disordered systems
- Effects of disorder on first order phase transitions
- \(\Rightarrow \) Random Bond Potts Model (RBPM), especially in the large-\(q \)-limit, is a perfect ground to analyze this aspect

Outline

- Potts model in the random cluster representation
- Introducing disorder
- Results and perspectives
The q-state Potts model is defined by:

\[
Z = \sum_{\{\sigma\}} q^{-\beta \mathcal{H}(\{\sigma\})}
\]

where \(\mathcal{H} = -\sum_{\langle i,j \rangle} J_{ij} \delta(\sigma_i, \sigma_j) \) for \(\sigma_i = 0, 1, \ldots, q - 1 \). The \(J_{ij} \) are FM random couplings.

The random cluster representation is:

\[
Z = \sum_{G \subseteq E} q^{c(G)} \prod_{ij \in G} \nu_{ij} \quad \nu_{ij} = e^{\beta J_{ij}} - 1
\]
$q=3$

0 1 2

RBPM in the large-q limit

M.T. Mercaldo, J-C. Anglès d'Auriac, F. Iglói
\[c(G) = 10 + 12 = 22 \]
$$c(G) \prod_{e} (e^{\beta J_e} - 1)$$
Properties of homogeneous Potts model

The properties of the homogeneous Potts model can be studied in various limits. In the large-q limit, the Potts model exhibits a first-order phase transition (PT) at a critical point q_c. The critical behavior in two dimensions ($2D$) is given by:

- For $q > q_c$, the first-order PT is strongly 1^{st} order.
- In the $q!1^{st}$ limit, the PT is strongly 1^{st} order.

In systems with disorder, the Harris criterion is used to determine the relevance of disorder:

- If $P > 0$, disorder is relevant.
- If $P < 0$, disorder is irrelevant.

Relevant disorder affects the conventional random fixed-point (FP) behavior, while infinite randomness FP (IRFP) builds up disorder that grows without limits.

Congresso del Dipartimento di Fisica “E.R. Caianiello”— 19-20 Aprile 2004, Salerno.

RBP M in the large-q limit

M.T. Mercaldo, J-C. Anglès d'Auriac, F. Iglói
Properties of homogeneous Potts model

\[q < q_c \Rightarrow 2^{nd} \text{ order PT} \]
\[q > q_c \Rightarrow 1^{st} \text{ order PT} \]
Properties of homogeneous Potts model

\[q < q_c \Rightarrow 2^{nd} \text{ order PT} \]
\[q > q_c \Rightarrow 1^{st} \text{ order PT} \]

in 2D: \(q_c = 4 \) (exact result)

in the \(q \to \infty \) limit
the PT is strongly 1\(^{st}\) order
Properties of homogeneous Potts model

$q < q_c$ \implies 2^{nd} \text{ order PT}

$q > q_c$ \implies 1^{st} \text{ order PT}

in $2D$: $q_c = 4$ (exact result)

in the $q \to \infty$ limit

the PT is strongly 1^{st} order

Systems with Disorder

Continuous PT

\[
\begin{align*}
\text{HARRIS criterion} \\
\alpha_P > 0 & \text{ disorder is relevant} \\
\alpha_P < 0 & \text{ disorder is irrelevant}
\end{align*}
\]

1^{st} \text{ order PT}

\[\notin \text{ criterion} \]

it is only known that DISORDER

will SOFTEN the transition

RBPM in the large-\(q\) limit

M.T. Mercaldo, J-C. Anglès d'Auriac, F. Iglói
Properties of homogeneous Potts model

$q < q_c$ \Rightarrow 2^{nd} \text{ order PT}

$q > q_c$ \Rightarrow 1^{st} \text{ order PT}

in $2D$: $q_c = 4$ (exact result)

in the $q \to \infty$ limit
the PT is strongly 1^{st} order

Systems with Disorder

Continuous PT

HARRIS criterion

$\alpha_P > 0$ disorder is relevant

$\alpha_P < 0$ disorder is irrelevant

1^{st} order PT

$\not{\exists}$ criterion

it is only known that DISORDER
will SOFTEN the transition

Relevant disorder

Conventional Random FP (different values of critical exponents)

Infinite Randomness FP (IRFP) (disorder grows without limits)
\[T \to T' = T \ln q \quad f(T) \to \frac{f(T')}{\ln q} \]

\[Z = \sum_{G \subseteq E} q^{c(G)} \prod_{i,j \in G} \left[q^{\beta J_{ij}} - 1 \right] \]

\[Z = \sum_{G \subseteq E} q^{\phi(G)} \]

\[\phi(G) = c(G) + \beta \sum_{i,j \in G} J_{ij} \]
$q \to \infty$ limit

\[
T \to T' = T \ln q \\
f(T) \to \frac{f(T')}{\ln q}
\]

\[
Z = \sum_{G \subseteq E} q^{c(G)} \prod_{i,j \in G} [q^{\beta J_{ij}} - 1]
\]

\[
\downarrow_{q \to \infty}
\]

\[
Z = \sum_{G \subseteq E} q^{\phi(G)}
\]

\[
\phi(G) = c(G) + \beta \sum_{i,j \in G} J_{ij}
\]

\[
Z = n_0 q^{\phi^*}(1 + \ldots)
\]

where \(\phi^* = \max_G \phi(G)\)

and \(\phi^* = -\beta N f\)
All information about the RBPM in the large-q limit is contained in the **OPTIMAL SET G^***
All information about the RBPM in the large-q limit is contained in the OPTIMAL SET G^*

Thermal properties are calculated from ϕ^*
All information about the RBPM in the large-\(q\) limit is contained in the **OPTIMAL SET** \(G^*\)

THERMAL PROPERTIES ARE CALCULATED FROM \(\phi^*\)

- free energy, internal energy, specific heat,...
All information about the RBPM in the large-q limit is contained in the OPTIMAL SET G^*

- **THERMAL PROPERTIES ARE CALCULATED FROM** ϕ^*
 - free energy, internal energy, specific heat, ...

- **MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM THE GEOMETRICAL STRUCTURE OF** G^*
All information about the RBPM in the large-q limit is contained in the **OPTIMAL SET** G^*

- **THERMAL PROPERTIES ARE CALCULATED FROM** ϕ^*
 - free energy, internal energy, specific heat,...

- **MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM THE GEOMETRICAL STRUCTURE OF** G^*
 - $C(r)$, average correlation function, is related to the distribution of clusters
All information about the RBPM in the large-q limit is contained in the OPTIMAL SET G^*

- **THERMAL PROPERTIES ARE CALCULATED FROM** ϕ^*
 - free energy, internal energy, specific heat, ...

- **MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM THE GEOMETRICAL STRUCTURE OF** G^*
 - $C(r)$, average correlation function, is related to the distribution of clusters
 - m, magnetization, is the fraction of sites in the *infinite* cluster
All information about the RBPM in the large-\(q \) limit is contained in the OPTIMAL SET \(G^* \)

- **Thermal Properties are Calculated from \(\phi^* \)**
 - free energy, internal energy, specific heat, ...

- **Magnetization and Correlation Functions are Obtained from the Geometrical Structure of \(G^* \)**
 - \(C(r) \), average correlation function, is related to the distribution of clusters
 - \(m \), magnetization, is the fraction of sites in the infinite cluster
 - \(\xi \), correlation length, is the average size of the clusters
One has to find the maximizer over the 2-j E possible configuration! A supermodular function \((A + B) \geq (A \cdot B) \) for \(A;B \in E \) theorem of discrete math a combinatorial optimization method to maximize it in polynomial time for (G) of the Potts model as a specific algorithm has been formulated.

\(d = 2 \), \(L = 512 \) \(2^{524288} \).
One has to find the max over the $2^{|E|}$ possible configurations!
- One has to find the max over the $2^{|E|}$ possible configurations!

- ϕ^* is a supermodular function $\Rightarrow \phi(A) + \phi(B) \leq \phi(A \cup B) + \phi(A \cap B)$ $\forall A, B \in E$
maximize ϕ^*

- One has to find the max over the $2^{|E|}$ possible configuration!

- ϕ^* is a supermodular function \Rightarrow $\phi(A) + \phi(B) \leq \phi(A \cup B) + \phi(A \cap B)$ $\forall A, B \in E$

- Theorem of discrete math \Rightarrow \exists a combinatorial optimization method to maximize it in polynomial time
● One has to find the max over the $2^{|E|}$ possible configuration!

● ϕ^* is a supermodular function \Rightarrow $\phi(A) + \phi(B) \leq \phi(A \cup B) + \phi(A \cap B)$ $\forall A, B \in E$

● theorem of discrete math \Rightarrow \exists a combinatorial optimization method to maximize it in polynomial time

● for $\phi(G')$ of the Potts model a specific algorithm has been formulated

Angles d’Auriac et al. JPA35, 6973 (2002)
• One has to find the max over the $2^{|E|}$ possible configurations!

• ϕ^* is a supermodular function $\Rightarrow \phi(A) + \phi(B) \leq \phi(A \cup B) + \phi(A \cap B) \ \forall A, B \in E$

• theorem of discrete math $\Rightarrow \exists$ a combinatorial optimization method to maximize it in polynomial time

• for $\phi(G)$ of the Potts model a specific algorithm has been formulated

Angles d’Auriac et al. JPA35, 6973 (2002)

\[d = 2 \quad L = 512 \quad \Rightarrow \quad 2^{524288} \sim 2.6 \cdot 10^{157826} \]
RBPM in the large-q limit

M.T. Mercaldo, J-C. Anglès d'Auriac, F. Iglói
\[
P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right)
\]

\[T = 1.200\]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \]

\[T = 1.166 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \]

\[T = 1.066 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 1.050 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \] \quad T = 1.042
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 1.033 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 1.025 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 1.016 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 1.008 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 1.000 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 0.992 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 0.983 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 0.967 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 0.9416 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 0.667 \]
\[P(J) = \frac{1}{2} \delta \left(J - \frac{1}{6} \right) + \frac{1}{2} \delta \left(J - \frac{5}{6} \right) \quad T = 0.500 \]
IN2DDISORDERDESTROYPHASEOC

itsoftensthe1storderPTintoa2ndorderPT

IN3DWEAKDISORDERDOESNOTDISTROYPHASEOC

ie.disorderhastobestrongenoughtosoftenthePTintobreakinglenght2ndorderabove

orderedphaseT/d

breakinglenght2ndorderbelow

orderedphaseT/d

breakinglenght1storderabove

1storderbelowbreakinglenght

Inafinitesizesystemweakdisorderfluctuationcouldnotbesufficienttobreakphasecoexistence.
In 2D Disorder destroy Phase Coexistence \Rightarrow it softens the 1^{st} order PT into a 2^{nd} order PT.
In 2D Disorder destroy Phase Coexistence ⇒ it softens the 1^{st} order PT into a 2^{nd} order PT

In 3D Weak Disorder does not destroy Phase Coexistence i.e. disorder has to be strong enough to soften the PT into 2^{nd} order PT
In 2D Disorder destroy Phase Coexistence ⇒ it softens the 1st order PT into a 2nd order PT.

In 3D Weak Disorder does not destroy Phase Coexistence i.e. disorder has to be strong enough to soften the PT into 2nd order PT.
In 2D Disorder destroy Phase Coexistence ⇒ it softens the 1st order PT into a 2nd order PT

In 3D Weak Disorder does not destroy Phase Coexistence i.e. disorder has to be strong enough to soften the PT into 2nd order PT
- **In 2D Disorder destroy Phase Coexistence** ⇒ it softens the 1^{st} order PT into a 2^{nd} order PT

- **In 3D Weak Disorder does not destroy Phase Coexistence** i.e. disorder has to be strong enough to soften the PT into 2^{nd} order PT

\[
\begin{align*}
\delta &
\begin{array}{c}
\text{2D} \\
\text{ordered phase}
\end{array}
\end{align*}
\]

2nd order above breaking length

2nd order below breaking length

\[
\begin{align*}
\delta &
\begin{array}{c}
\text{3D} \\
\text{ordered phase}
\end{array}
\end{align*}
\]

2nd order

1st order above breaking length

1st order below breaking length

In 2D Disorder destroy Phase Coexistence → it softens the 1st order PT into a 2nd order PT

In 3D Weak Disorder does not destroy Phase Coexistence i.e. disorder has to be strong enough to soften the PT into 2nd order PT

In a finite size system weak disorder fluctuation could not be sufficient to break phase coexistence
Through extreme value statistics one can estimate the **breaking length scale** $L \sim \exp[(1/\delta)^2]$

[the finite length scale L at which breaking of phase coexistence take place]

strength of disorder $\delta = \Delta/J$
Through extreme value statistics one can estimate the breaking length scale $L \sim \exp[(1/\delta)^2]$

[the finite length scale L at which breaking of phase coexistence take place]

strenght of disorder $\delta = \Delta / J$
Through extreme value statistics one can estimate the **breaking length scale** \(L \sim \exp[(1/\delta)^2] \)

[the finite length scale \(L \) at which breaking of phase coexistence take place]

\[
\text{strength of disorder } \delta = \frac{\Delta}{J}
\]
Free Energy: \[F = c(G^*)T - \sum_{ij \in G^*} J_{ij} \]
Internal Energy: \[E = -\sum_{ij \in G^*} J_{ij} \]

- For a given sample \(E \) is a piecewise constant function of temperature \(\Rightarrow \) it shows discontinuities
- The average over disorder generally smears out discontinuities
- The behavior of averaged quantities is different for the discrete and the continuous distributions
At the critical point the largest cluster of G^* is a fractal and its mass $M \sim L^{d_f}$

$$d_f = d - \frac{\beta}{\nu}$$

$$d_f = \frac{5 + \sqrt{5}}{4}$$

According to scaling theory, cumulative distribution of the mass of the cluster

$$R(M, L) = M^{-\tau} \tilde{R}(M/L^{d_f})$$
Results in 2D

\[\alpha = 0, \ \beta = \frac{3 - \sqrt{5}}{4}, \ \nu = 1 \quad \text{as for the RTIM} \Rightarrow \text{IRFP} \]

We can argue that the RTIM is the Hamiltonian version of the 2D RBPM in the large-q limit

Ref.: Mercaldo, Anglès d’Auriac, Iglói, PRE 69, 0461xx (2004); Anglès d’Auriac, Iglói PRL 90, 190601 (2003)
Conclusions

Results in 2D

- \(\alpha = 0, \beta = \frac{3 - \sqrt{5}}{4}, \nu = 1 \) as for the RTIM \(\Rightarrow \) IRFP !

- We can argue that the RTIM is the Hamiltonian version of the 2D RBPM in the large-\(q \) limit

Ref.: Mercaldo, Anglès d’Auriac, Iglói, PRE *69*, 0461xx (2004);

Questions in 3D

- Is the transition line \(T_c/d = 1 \) for \(\delta \ll 1 \) ?

- Is \(\delta = 1/2 \) the tricritical point ?

- Does the critical line depend on the disorder distribution ?

Ref.: Anglès d’Auriac, Iglói, Mercaldo work in progress
Conclusions

★ RESULTS IN 2D

⇒ $\alpha = 0$, $\beta = \frac{3 - \sqrt{5}}{4}$, $\nu = 1$ as for the RTIM \Rightarrow IRFP !

⇒ We can argue that the RTIM is the Hamiltonian version of the 2D RBPM in the large-q limit

Ref.: Mercaldo, Anglès d’Auriac, Iglói, PRE 69, 0461xx (2004);
Anglès d’Auriac, Iglói PRL 90, 190601 (2003)

★ QUESTIONS IN 3D

⇒ is the transition line $T_c/d = 1$ for $\delta \ll 1$?

⇒ is $\delta = 1/2$ the tricritical point ?

⇒ does the critical line depend on the disorder distribution ?

Ref.: Anglès d’Auriac, Iglói, Mercaldo work in progress

★ RELATED PROBLEM

⇒ Critical Properties of Quantum Potts model

Ref.: Mercaldo, De Cesare, work in progress