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We introduce a model of generalized Hebbian learning and retrieval in
oscillatory neural networks modeling cortical areas such as hippocam-
pus and olfactory cortex. Recent experiments have shown that synaptic
plasticity depends on spike timing, especially on synapses from exci-
tatory pyramidal cells, in hippocampus, and in sensory and cerebellar
cortex. Here we study how such plasticity can be used to form memories
and input representations when the neural dynamics are oscillatory, as
is common in the brain (particularly in the hippocampus and olfactory
cortex). Learning is assumed to occur in a phase of neural plasticity, in
which the network is clamped to external teaching signals. By suitable
manipulation of the nonlinearity of the neurons or the oscillation fre-
quencies during learning, the model can be made, in a retrieval phase,
either to categorize new inputs or to map them, in a continuous fashion,
onto the space spanned by the imprinted patterns. We identify the first
of these possibilities with the function of olfactory cortex and the second
with the observed response characteristics of place cells in hippocampus.
We investigate both kinds of networks analytically and by computer sim-
ulations, and we link the models with experimental findings, exploring,
in particular, how the spike timing dependence of the synaptic plasticity
constrains the computational function of the network and vice versa.

1 Introduction

It has long been known that the brain is a dynamical system in which non-
static activities are common. In particular, oscillatory neural activity has
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been observed and is believed to play significant functional roles in, for ex-
ample, the hippocampus and the olfactory cortex. The inputs to these areas
can be oscillatory, and the intra-areal connections also make these systems
prone to intrinsic oscillatory dynamics. Networks of interacting excitatory
and inhibitory neurons (E-I networks) are ubiquitous in the brain, and oscil-
latory activity is not unexpected in such networks because of the intrinsically
asymmetric character of the interactions between excitatory and inhibitory
cells (see, e.g., Menschik & Finkel, 1999; Fellous & Sejnowski, 2000; Tiesinga,
Fellous, Jose, & Sejnowski, 2001). Recent experimental findings further un-
derscored the importance of dynamics by showing that long-term changes
in synaptic strengths depend on the relative timing of pre- and postsynap-
tic firing (Magee & Johnston, 1997; Debanne, Gahwiler, & Thompson, 1994,
1998; Bi & Poo, 1998; Markram, Lubke, Frotscher, & Sakmann, 1997; Bell,
Han, Sugawara, & Grant, 1997, 1999; Feldman, 2000). For instance, in neocor-
tical and hippocampal pyramidal cells (Magee & Johnston, 1997; Debanne
et al., 1998; Bi & Poo, 1998; Markram et al., 1997; Feldman, 2000), the synap-
tic strength increases (long-term potentiation, LTP) or decreases (long-term
depression, LTD), depending on whether the presynaptic spike precedes or
follows the postsynaptic one. The computational role and functional impli-
cations of this type of plasticity have been explored in recent work (Rao &
Sejnowski, 2001; Kempter, Gerstner, & van Hemmen, 1999; Song, Miller, &
Abbott, 2000 and references therein). This synaptic modification is largest
for differences between pre- and postsynaptic spike times of the order of 10
ms. Since the scale of this relative timing is comparable to the period of neu-
ral oscillations, the oscillatory dynamics should affect the resulting synaptic
modifications. In particular, the relative phases between the oscillating neu-
rons ought to constrain the synaptic changes that can occur. These synaptic
strengths should in turn determine the nature of the network dynamics.
This interplay seems likely to have significant functional consequences.

While we have achieved some understanding of the computational power
of oscillatory networks (see Li & Dayan, 1999 and references therein), they
are poorly understood in comparison with networks that always converge to
static states, such as feedforward networks or recurrent networks with sym-
metric connections. In particular, although we know a lot about appropriate
learning algorithms for associative memory in symmetrically connected and
feedforward networks (Hertz, Krogh, & Palmer, 1991), there is little previ-
ous work on learning, in the context of the synaptic physiological findings
mentioned above, in asymmetrically connected networks with oscillatory
dynamics. In this article, we introduce a model for spike-timing dependent
learning in an oscillatory neural network and show how such a network
can perform associative memory or input representation after learning.

The experimental findings dictate the general form of our model. It is
an E-I network, with asymmetric interactions between excitatory and in-
hibitory cells, that exhibits input-driven oscillatory activity. We describe
the long-term synaptic changes induced by a pair of pre- and postsynaptic
spikes at times tpre and tpost by a function, which we denote A(τ ), of the dif-
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ference in spike times τ = tpost − tpre. Hence, A(τ ) is positive or negative for
LTP or LTD for a particular τ value. According to the experiments (Magee
& Johnston, 1997; Debanne et al., 1994, 1998; Bi & Poo, 1998; Markram et al.,
1997; Bell et al., 1997, 1999; Feldman, 2000), A(τ ) varies in different prepa-
rations. For instance, the synapses between hippocampal pyramidal cells
have A(τ ) > 0 when τ > 0 and A(τ ) < 0 when τ < 0. We will consider
a general A(τ ) in order to be able to explore the consequences of different
forms of this function that may be relevant to different areas or conditions.
We study analytically and by simulation how oscillatory activities influence
synaptic changes and how these changes influence the network oscillations
and their functions. In particular, we ask the following questions: (1) How
can the system function as an associative memory or as a substrate for a
map of an input space? (2) What constraints do these functions place on the
form of A(τ )? (3) What constraints would particular experimental findings
about A(τ ) impose on the function of networks like this one?

In the next section, we present the model E-I network and describe its
dynamics for arbitrary synaptic strengths, making use of a linearized anal-
ysis. Section 3 then applies the spike-timing-dependent synaptic dynamics
to the firing states evoked by oscillatory input. We obtain general expres-
sions for the resulting learned synaptic strengths and use the linearized
theory to study the response properties of the network. We show how
the learning rates can be adjusted so that after learning, the network re-
sponds strongly (resonantly) to inputs similar to those used to drive it dur-
ing learning and weakly to unlearned inputs. In addition to this pattern
tuning, the system exhibits tuning with respect to driving frequency: the re-
sponse is weakened for driving frequencies different from that used during
learning.

We show further that depending on the kind of nonlinearity in the neu-
ronal input-output function, the model can perform two qualitatively dif-
ferent kinds of computations. One is associative memory, in which an input
to the network is categorized by identifying it with the learned pattern most
similar to it. (Olfactory cortex is believed to operate in something like this
way.) The other is to make a representation of the input pattern as a con-
tinuous mapping onto the space spanned by the learned patterns. For this
mode of operation, which we call input representation, it is not necessary
for the network to have learned explicitly all patterns to which it should
respond; it performs a kind of interpolation between a much smaller num-
ber of prototypes. (In the hippocampus, we identify these prototypes with
place cell fields.) Section 4 presents the nonlinear analysis of the network
for both these cases. In section 5, we examine the consequences of various
possible constraints on the signs and plasticities of the synapses. Despite the
primitive character of the model we use, we believe our findings may have
relevance to the dynamics of many cortical areas. In the final section, we dis-
cuss our results in the context of other modeling and experimental findings,
indicating some interesting directions, both experimental and theoretical,
for future work.
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2 The Model

We base our model on one formulated recently by two of us (Li & Hertz,
2000) to describe olfactory cortex. For completeness, we summarize its main
features here. In the brain regions we model, hippocampus or olfactory cor-
tex, pyramidal cells make long-range connections to both other pyramidal
cells and inhibitory interneurons, while inhibitory interneurons generally
project only locally (see Figure 1A). The elementary module of the system
is an E-I pair consisting of one excitatory and one inhibitory unit, mutually
connected. Each such unit represents a local assembly of pyramidal cells
or local interneurons sharing common, or at least highly correlated, input.
(The number of neurons represented by the excitatory units is in general
different from the number represented by the inhibitory units.) Such E-I
pairs, without connections between them, form independent damped local
oscillators. The connections between units in different pairs, which we term
long-range connections, are subject to learning or plasticity in this study.
They couple the pairs and determine the normal modes of the coupled-
oscillator system. The input to the system is an oscillating pattern Ii driving
the excitatory units. It models the bulb input to the pyramidal cells in the
olfactory cortex or the input from the enthorinal cortex (perforant path) and
the dentate gyrus (mossy-fiber) to CA3 pyramidal cells. The system outputs
are from the excitatory cells.

The state variables, modeling the membrane potentials, are u = {u1, . . . ,

uN} and v = {v1, . . . , vN}, respectively, for the excitatory and inhibitory
units. (We denote vectors by bold type.) The unit outputs, representing the
probabilities of the cells firing (or instantaneous firing rates), are given by
gu(u1), . . . , gu(uN) and gv(v1), . . . , gv(vN), where gu and gv are sigmoidal
activation functions that model the neuronal input-output relations. The
equations of motion are

u̇i = −αui − β0
i gv(vi)+

∑
j

J0
ijgu(uj)+ Ii, (2.1)

v̇i = −αvi + γ 0
i gu(ui)+

∑
j�=i

W0
ij gu(uj), (2.2)

Figure 1: Facing page. (A) The model elements. Input is to the excitatory units
u, which also provide the network output. There are local excitatory-inhibitory
connections (vertical solid lines) and nonlocal connections (indicated by dashed
lines) between the excitatory units (Jij) and from excitatory to inhibitory units
(Wij). (B–D) The activation functions for model neurons. Class I and class II
nonlinearities are shown in B and C, respectively. Crosses mark the equilibrium
point (ū, v̄) of the system (see section 2.1) used in our numerical simulations.
The slopes of all activation functions used in these calculations are taken to be
1 at the equilibrium point. (E–G) An example of kernel shape A(τ ) (Kempter et
al., 1999) and the real and imaginary part of its Fourier transform.
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where α−1 is the membrane time constant (for simplicity, assume the same
for excitatory and inhibitory units), J0

ij is the synaptic strength from excita-

tory unit j to excitatory unit i, W0
ij is the synaptic strength from excitatory

unit j to inhibitory unit i, β0
i and γ 0

i are the local inhibitory and excitatory
connections within the E-I pair i, and Ii(t) is the net input from other parts
of the brain. We omit inhibitory connections between pairs here, since the
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real anatomical long-range connections appear to come predominantly from
excitatory cells. (The parameter γ 0

i could be identified as W0
ii and the term

γ 0
i gu(ui) absorbed into the following sum over j, but for later convenience,

we have written this local term explicitly.) All these parameters are nonneg-
ative; the inhibitory character of the second term on the right-hand side of
equation 2.1 is indicated by the minus sign preceding it.

2.1 Linearization. The static part Ī of the input determines a fixed point
(ū, v̄), given by the solution of equations u̇ = 0, v̇ = 0 with I = Ī. Linearizing
equations 2.1 and 2.2 around the fixed point leads to

u̇i = −αui − βivi +
∑

j

Jijuj + δIi

v̇i = −αvi + γiui +
∑

j

Wijuj, (2.3)

where ui and vi are now measured from their fixed-point values, δI ≡ I − Ī ,
βi = g′

v(v̄i)β
0
i , γi = g′

u(ūi)γ
0
i , Wij = g′

u(ūj)W0
ij Jij = g′

u(ūj)J0
ij. Henceforth, for

simplicity, we assume βi = β, γi = γ , independent of i.
Eliminating the vi from equation 2.3, we have the second-order differen-

tial equations

[(∂t + α)2 + βγ ]u = Mu + (∂t + α)δI (2.4)

where

M = (∂t + α)J − βW, (2.5)

or, equivalently,

ü + (2α − J)u̇ + [α2 − αJ + β(γ + W)]u = (∂t + α)δI. (2.6)

(We use sans serif type to denote matrices.)
Given a stable fixed point, an oscillatory drive δI ≡ δI+ + δI−, where

δI+ ∝ e−iωt and δI− = δI+∗, will lead eventually to a sustained oscillatory
response u ≡ u+ + u− with the same frequency ω, with u+ ∝ e−iωt and
u− = u+∗. Then from equation 2.4,

[(−iω + α)2 + βγ ]u+
i =

∑
j

Miju+
j + (α − iω)δI+

i , (2.7)

where

M = (α − iω)J − βW (2.8)
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is now the M in equation 2.5 applied to the e−iωt modes. The terms in the
square bracket describe the local E-I pair contribution, while M gives an
effective coupling between the oscillating E-I pairs. A zero M makes u pro-
portional to δI with a constant phase shift, that is, each individual damping
oscillator is driven independently by a component of the external drive.
Learning imprints patterns into M through the long-range connections J
and W. After learning, u depends on how δI+ decomposes into the eigen-
vectors of M. Thus, the network can selectively amplify or distort δI in an
imprinted-pattern-specific manner and thereby function as an associative
memory or input representation.

2.2 Nonlinearity. At large response amplitudes, nonlinearity in gu and
gv significantly modifies the response. We will focus on the nonlinearity in
gu only, since gv affects only the local synaptic input while gu also affects
the long-range input mediated by J and W. We categorize the nonlinearity
into two general classes in terms of how gu deviates from linearity near the
fixed-point ū:

class I: gu(ui) ∼ ui − au3
i class II: gu(ui) ∼ ui + au3

i − bu5
i , (2.9)

where a, b > 0, and ui is measured from the fixed-point value ūi. Class I and
II nonlinearity differ in whether the gain g′

u decreases or increases (before
saturation) as one moves away from the equilibrium point and will lead to
qualitatively different behavior, as will be shown. We will not treat the more
general case where gu(u) is not an odd function of u. However, to lowest
order, a quadratic term acts just to shift the equilibrium point, and a quartic
one does not affect our results qualitatively.

3 Learning, Neural Dynamics, and Model Behavior

In our treatment, we distinguish a learning mode, in which the oscillating
patterns are imprinted in the synaptic connections J and W, from a recall
mode, in which connection strengths do not change. Of course, this distinc-
tion is somewhat artificial; real neural dynamics may not be separated so
cleanly into such distinct modes. Nevertheless, among other effects (Men-
schik & Finkel, 1999; Fellous & Sejnowski, 2000), cholinergic modulatory ef-
fects probably do weaken synapses during learning (Hasselmo, 1993, 1999),
so there is an experimental basis for the distinction, and it is conceptually
indispensable.

In what follows we will consider learning of oscillation patterns of two
kinds. In one, two local oscillators are either in phase with each other or
180 degrees out of phase; we can write ui(t) ∝ ξi cosωt, where the ξi are
real numbers (either positive or negative) describing the amplitudes on the
different sites. In the second kind of pattern, different local oscillators can
have different phases: ui(t) ∝ |ξi| cos(ωt−φi). We can describe both cases by
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writing ui(t) = ξie−iωt + c.c., taking the ξi real in the first case and complex
(ξi = |ξi|eiφi ) in the second. Thus, we will often call the first case real patterns
and the second complex patterns.

3.1 Learning Mode. Let Cij be the synaptic strength from presynaptic
unit j to postsynaptic unit i. Let xj(t) and yi(t) represent the corresponding
activities relative to some stationary levels at which no changes in synaptic
strength occur. Then Cij changes during the learning interval [0,T] accord-
ing to

δCij(t) = 〈yi(t)A(t − t′)xj(t′)〉 = η

T

∫ T

0
dt

∫ ∞

−∞
dt′ yi(t)A(t − t′)xj(t′), (3.1)

where η is the learning rate and T may be taken equal to the period of the os-
cillating input. The kernel A(t− t′) is the measure of the strength of synaptic
change at time delay τ = t−t′. For example, conventional Hebbian learning,
with A(τ ) ∝ δ(τ ) (used, e.g., in Li & Hertz, 2000), gives δCij ∝ ∫ T

0 dt ui(t)uj(t).
Some experiments (Bi & Poo, 1998; Markram et al., 1997) suggest A(τ ) to be
a nearly antisymmetric function of τ , positive (LTP) for τ > 0 and negative
(LTD) for τ < 0 (see Figures 1E–1G). However, for the moment we do not
restrict its shape.

In equation 3.1, the contributions of all pre-post spike pairs are com-
bined additively. The polarity and the magnitude of each contribution are
determined by the time delay of each pair of spikes via the kernel A(τ ). This
weighted sum makes the resulting synaptic change depend on both the time
delay and the spike rates. Our preliminary investigations indicate that with
an appropriate choice of kernel, this simple linear model can reproduce the
essential features of the results of Sjöström, Turrigiano, & Nelson (2001).

Applying the learning rule to our connections Jij and Wij, we use equa-
tion 3.1 with x = u, C = J or W, and y = u or v, respectively, giving:

Jij = 1
NT

∫ T

0
dt

∫ ∞

−∞
dt′ ui(t)AJ(t − t′)uj(t′)

Wij = 1
NT

∫ T

0
dt

∫ ∞

−∞
dt′ vi(t)AW(t − t′)uj(t′). (3.2)

We have absorbed the learning rates into the definition of the kernels AJ,W
and added the conventional normalizing factor 1/N for convenience in do-
ing the mean-field calculations.

Cholinergic modulation can affect the strengths of long-range connec-
tions in the brain; these are apparently almost ineffective during learning
(Hasselmo, 1993, 1999). The neural dynamics is then simplified in our model
by turning off J and W (and thus M) in the learning phase.
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Consider the learning of a single input pattern, δI = ξµe−iωµt + c.c. We
calculate separately the responses u±

i and v±
i to the positive- and negative-

frequency parts of the input, add them together, and use the resulting ui(t)
and vi(t) in equations 3.2 to calculate Jij and Wij. For the positive-frequency
response, we obtain

u+
i = (α − iωµ)ξ

µ
i e−iωµt

(α − iωµ)2 + βγ
≡ χ0(ωµ)ξ

µ
i e−iωµt (3.3)

v+
i = γ

α − iωµ
χ0(ωµ)ξ

µ
i e−iωµt. (3.4)

The quantity χ0(ω) is the output-to-input ratio for the network with J and
W equal to zero. The responses u−

i and v−
i to the corresponding negative-

frequency driving pattern δI− = ξµ∗eiωµt are the complex conjugates of
equations 3.3 and 3.4, respectively.

Substituting these responses into equations 3.2 yields connections

Jµij = 2
N

Re
[
ÃJ(ωµ) ξ

µ
i ξ

µ∗
j

]

Wµ

ij = 2γ
N

Re

[
ÃW(ωµ)

α − iωµ
ξ
µ
i ξ

µ∗
j

]
, (3.5)

where

ÃJ,W(ω) = |χ0(ω)|2
∫ ∞

−∞
dτ AJ,W(τ )e−iωτ (3.6)

can be thought of as an effective learning rate at a frequency ω. The factor of
the Fourier transform of the learning kernel carries the information about
different efficacies of learning for different postsynaptic-presynaptic spike
time differences, while the factor |χ0(ω)|2 reflects the responsiveness of the
uncoupled local oscillators (J = W = 0) in the learning phase. Note that
Im ÃJ,W(ω) = 0 if AJ,W(τ ) is symmetric in τ and that Re ÃJ,W(ω) = 0 if
AJ,W(τ ) is antisymmetric. We will sometimes denote the real and imaginary
parts of ÃJ,W by Ã′

J,W and Ã′′
J,W , respectively.

The resulting effective coupling M between oscillators after learning, un-
der positive-frequency external drive δI+ of frequency ω > 0 (in general
ω �= ωµ), is

Mµ

ij = 2(α − iω)
N

Re[ÃJ(ωµ)ξ
µ
i ξ

µ∗
j ] − 2βγ

N
Re

[
ÃW(ωµ)

α − iωµ
ξ
µ
i ξ

µ∗
j

]
. (3.7)

The dependence of the neural connections J and W and the oscillator
couplings M on ξµi ξ

µ∗
j is a natural generalization of the Hebb-Hopfield factor
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ξ
µ
i ξ

µ

j for (real) static patterns. This becomes particularly clear if we consider
the special case when there is the following matching condition between
the two kernels:

ÃJ(ωµ) = βγ

α2 + ω2
µ

ÃW(ωµ), ω = ωµ. (3.8)

Then the oscillator coupling simplifies into a familiar outer-product form
for complex vectors ξ:

Mµ

ij = −2iωµÃJ(ωµ)ξ
µ
i ξ

µ∗
j /N, (3.9)

To construct the corresponding matrices for multiple patterns (which we
will always take to be random and independent), we simply sum equa-
tion 3.5 over input patterns, labeled by the index µ, as for the Hopfield
model. We restrict attention to the case where the number P of stored pat-
terns is negligible in comparison with N, the size of the network (though it
may be � 1). So far, all our results apply for both real and complex patterns.

3.2 Recall Mode. After learning, the connections are fixed and the re-
sponse u+ to an input δI+ ∝ e−iωt is described by equation 2.7. To solve
it, we need to know how the M matrix acts on input vectors. We consider
uncorrelated patterns all learned at the same frequency (ωµ independent of
µ). Then it is easy to see that M is a projector onto the space spanned by
the imprinted patterns. It has P eigenvectors (the imprinted patterns) with
the same nonzero eigenvalue and N − P with eigenvalue zero. These are
standard properties of outer-product constructions for orthogonal vectors;
we can treat our ξµ as effectively orthogonal here because we are taking
the components ξµi to be independent and N � P (Amit, Gutfreund, &
Sompolinsky, 1985).

The nonvanishing eigenvalue of M, which we denote�(ω,ωµ), is simply
computed as

�(ω;ωµ) = (α − iω)ÃJ(ωµ)− βγ ÃW(ωµ)

α − iωµ
(3.10)

for complex patterns and

�(ω;ωµ) = 2(α − iω)Re ÃJ(ωµ)− 2βγ Re

[
ÃW(ωµ)

α − iωµ

]
(3.11)

for real patterns.
Thus, from equation 2.7, the response u+ to an input δI+ in the imprinted-

pattern subspace is

u+ = χ(ω;ωµ)δI+, (3.12)
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with the linear response coefficient or susceptibility

χ(ω;ωµ) = α − iω
α2 + βγ − ω2 − 2iωα −�(ω;ωµ) . (3.13)

To achieve a resonant response to an input at the imprinting frequency
(ω = ωµ), the learning kernels should be adjusted so that both the real and
imaginary parts of the denominator in χ(ωµ;ωµ) are close to zero, that is,

ε ≡ α2 + βγ − ω2
µ − Re�(ωµ;ωµ) → 0, (3.14)

� ≡ 2ωµα + Im�(ωµ;ωµ) → 0. (3.15)

For real patterns, Im�(ωµ;ωµ) = −2ωµÃ′
J, so � = 2ωµ(α − Ã′

J). Thus,

small� requires a positive Ã′
J > 0, i.e., stronger positive-τ LTP than negative-

τ LTD for excitatory-excitatory couplings (again, provided the typical values
of τ for which AJ(τ ) is sizable are small compared to the oscillation period).
From equation 3.14,

ε = α2 + βγ − ω2
µ − 2 Re

[
αÃJ(ωµ)− βγ ÃW(ωµ)

α − iωµ

]
. (3.16)

Thus, for a given ωµ, the resonance condition enforces a constraint on a
linear combination of Ã′

J, Ã′
W , and Ã′′

W . However, we note that Ã′′
J does not

appear anywhere; it is simply irrelevant to learning real patterns.
For complex patterns,

ε = α2 + βγ − ω2
µ − (αÃ′

J + ωµÃ′′
J )

+ βγ

α2 + ω2
µ

(αÃ′
W − ωµÃ′′

W) (3.17)

� = 2ωµα + (αÃ′′
J − ωµÃ′

J)− βγ

α2 + ω2
µ

(αÃ′′
W + ωµÃ′

W). (3.18)

(We have temporarily suppressed the ωµ-dependence of Ã′
J,W and Ã′′

J,W to
save space.) One can get some insight here by considering the time-shifted
learning kernels AJ(τ+θµ/ωµ) and AW(τ−θµ/ωµ), where θµ = tan−1(α/ωµ).
(Forα ∼ ωµ ≈ 40 Hz, these shifts are around 3 ms.) In terms of the associated
frequency-domain quantities,

B̃J,W(ω) = |χ0(ω)|2
∫ ∞

−∞
dτ AJ,W(τ ± θµ/ωµ)e−iωτ

= ÃJ,W(ω)e±iθµ , (3.19)
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we can write equations 3.17 and 3.18 as

ε = α2 + βγ − ω2
µ −

√
α2 + ω2

µB̃′′
J (ωµ)− βγ√

α2 + ω2
µ

B̃′′
W(ωµ) (3.20)

� = 2ωµα −
√
α2 + ω2

µB̃′
J(ωµ)− βγ√

α2 + ω2
µ

B̃′
W(ωµ). (3.21)

Thus, the imaginary parts of the frequency-domain kernels B̃J,W(ωµ) shift
the resonant frequency, and the real parts control the damping. In particular,
one needs at least one of B̃′

J,W to be positive to achieve good frequency tuning.

Negative (positive) imaginary parts B̃′′
J,W increase (decrease) the resonant

frequency.
When the learning window widths in the kernels AJ,W(τ ) are much

smaller than the oscillation period, the shifts by ±θµ/ωµ do not affect the
real parts of BJ,W strongly. However, for window shapes (see Figure 1E) that
change rapidly from negative to positive around τ = 0, the imaginary parts
can be strongly suppressed, even for fairly small shifts.

The explicit form of the resonant response can be seen by expanding the
denominator of χ(ω;ωµ) around ω = ωµ:

χ(ω;ωµ) = α − iωµ
ε − i�− Z(ωµ)(ω − ωµ)

, (3.22)

where

Z(ωµ) = 2ωµ + 2iα + ∂�(ω;ωµ)
∂ω

∣∣∣∣
ω=ωµ

. (3.23)

Thus, χ has a pole at

ω = ωµ + ε − i�
Z

= ωµ + εZ′ −�Z′′ − i(�Z′ + εZ′′)
|Z|2 , (3.24)

and, as the driving frequency ω in the recall phase is varied, the system
exhibits a resonant tuning, with a peak near ωµ and a line width equal to
(�Z′ + εZ′′)/|Z|2.

One has to check that the desired learning rates and kernels do not violate
the condition that the response function, equation 3.13, be causal, that is,
small perturbations decay in time. Analytically, the requirement is that all
singularities of χ(ω, ωµ) must lie in the lower half of the complex ω plane.
Thus, in equation 3.24, we need �Z′ + εZ′′ to be positive.

For real patterns, the analysis is fairly simple. From equations 3.11, 3.15,
and 3.23, we obtain Z = 2ωµ + 2i(α − Ã′

J) and � = 2ωµ(α − Ã′
J). Thus, for
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� → 0, Z → 2ωµ, and the stability condition is simply that � be positive,
that is, Ã′

J(ωµ) < α.

For complex patterns, we get Z = 2ωµ + Ã′′
J + i(2α − Ã′

J). Requiring
�Z′ + εZ′′ to be positive then imposes constraints on the signs and relative
magnitudes of ε and �, depending on Z′ and Z′′. We omit the details.

Notice that for both the real and complex cases, the stability analysis does
not depend on the W-learning kernel AW at all (except insofar as it affects
ε and �). This is because Z involves the derivative ∂�(ω,ωµ)/∂ω, and in
both cases the only ω-dependence of � is in the factors (α − iω) in the first
terms of equations 3.10 and 3.11, which do not involve ÃW .

Figure 2 shows examples of the frequency tuning described by equa-
tion 3.22, as obtained from simulations of small networks, including the
nonlinearities described in section 2.2. Nonlinearity makes the response de-
viate from the linear prediction when the amplitude is larger, as happens
near the resonance frequency. In particular, class I and class II nonlinearities
lead to reduced and enhanced responses, respectively relative to the linear
prediction, as will be analyzed in detail.

3.2.1 Examples of Plasticity. We use examples to illustrate the constraints
that resonance and stability conditions place on the shape of the kernels for
complex patterns.

J only. If the patterns are imprinted only in the excitatory-excitatory con-
nections, we have only the first terms on the right-hand sides of equa-
tions 3.10 and 3.11.

For real patterns � = 2ωµ(α − Ã′
J) (no different from the general case),

so using � → 0 in equation 3.16 yields ε = βγ − α2 − ω2
µ. This then (from

ε = 0) fixes the imprinting frequency ωµ =
√
βγ − α2.

For complex patterns, we have � = 2ωµα −
√
α2 + ω2

µB̃′
J—similar to the

real-pattern case but with a shifted learning window and a different effective
strength. The resonant frequency shifts down or up according to the sign
of B̃′′

J .

Same-Sign Plasticities in J and W. Let us consider the case where the
kernels are related by the matching condition, equation 3.8. While the exact
match is clearly a special case, the simplification it yields in the algebra
permits some insight that can be expected to carry over qualitatively to
other cases where the two kernels have similar shapes and comparable
magnitudes. Here we find, from equations 3.10 and 3.11,

�(ωµ;ωµ) = −2iωµÃJ(ωµ), (3.25)
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for both real and complex patterns. Applying the resonance condition equa-
tions, 3.14 and 3.15, we have

Ã′′
J (ωµ) = −ω2

µ + α2 + βγ − ε

2ωµ
(3.26)

Ã′
J(ωµ) = α −�/2ωµ. (3.27)

Thus, Ã′
J(ωµ) reduces the effective damping from α to �/2ωµ � α, and

this requires Ã′(ωµ) ≈ α > 0. When the width of the learning kernel AJ(τ )
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is much smaller than the oscillation period, Ã′
J(ωµ) ≈ ∫

AJ(τ )dτ ; thus, a

positive Ã′
J(ωµ) requires that LTP dominate LTD in total strength.

We observe that a negative Ã′′
J (ωµ), as for example, an AJ(τ ) like that

in Figures 1E through 1G, forces ωµ to be greater than
√
α2 + βγ and thus

greater than the intrinsic E-I pair frequency
√
βγ (a shift in the opposite

direction from that in the J-only, real-pattern case).
In general, when the width of AJ(τ ) is not small, the resonance frequency

has to be determined from equations 3.26 and 3.27 by Ã′′
J (ωµ)/Ã′

J(ωµ) ≈
(−ω2

µ + α2 + βγ )/2αωµ.

Opposite-Sign Plasticities in J and W. We turn now to the case where
AJ(τ ) and AW(τ ) have opposite signs (for all τ ). Again, we turn to a partic-
ular matching of the magnitudes of the two kernels to find a simple case
that can give some general qualitative insight. We use our old matching
condition equation 3.8, but with a minus sign. For complex patterns, we
now find �(ωµ, ωµ) = 2αÃJ(ωµ), and, applying the resonance condition
equations 3.14 and 3.15,

Ã′
J(ωµ) = −ω2

µ + α2 + βγ − ε

2α
(3.28)

−Ã′′
J (ωµ) = ωµ −�/2α. (3.29)

Comparing these with equations 3.26 and 3.27 and the accompanying anal-
ysis, we see that the roles of the real and imaginary parts of ÃJ have been
reversed. Now it is the imaginary part that is constrained to be near a fixed
value (−ωµ) by the � → 0 condition and the real part that enters in the ε
equation. We note that we need Ã′′

J (ωµ) < 0 (like the case shown in Fig-

ure 1E) in order to obtain a small � and that the sign of Ã′(ωµ) determines
whether the resonance frequency is larger or smaller than

√
α2 + βγ .

Figure 2: Facing page. Frequency tuning, shown as response to δI+ = ξµe−iωt

after imprinting ξµe−iωµt with ωµ = 41 Hz. The network has 10 excitatory and 10
inhibitory units. In all figures in this article, except where explicitly stated, learn-
ing kernels are matched so that ÃJ = βγ

α2+ω2
µ

ÃW = 0.5 − i 0.028, and ωµ ∼ 41 Hz.

(A) Temporal activities of 3 of the 10 excitatory cells. gu and gv are as in Figures 1B
and 1D. (B) Frequency tuning curve. Response amplitude |〈u+|ξµe−iωt〉| (simply
|χ(ω;ωµ)| in the linearized theory) to input δI+ = ξµe−iωt. (B.1) Using matched
kernel, from linearized theory (solid line) and from class I (stars) and II (cir-
cles) nonlinearities. (B.2) Opposite-plasticities case (ÃJ = −ÃW = 0.99(α− iωµ)),
complex patterns. Solid line, circles, and triangles are results from the linearized
theory and the class II nonlinear model with ωµ = 41 Hz and ωµ = 68 Hz, re-
spectively.
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Another interesting special case for complex patterns is when AW = −AJ,
with the particular choice

ÃJ(ωµ) = α − iωµ. (3.30)

This leads to the remarkably simple result

χ(ω;ωµ) = i
ω − ωµ

. (3.31)

That is, the choice 3.30 satisfies both constraints, ε,� → 0 and, in addition,
puts the resonance right at the original driving frequency. Figure 2.B.2 shows
a frequency tuning curve obtained with ÃJ(ωµ) = 0.99(α − iωµ).

To understand the prescription ÃJ(ωµ) = α − iωµ, consider an oscilla-
tion period much greater than the temporal width of the learning kernel.
Then Ã′

J(ωµ) ≈ ∫
A(τ ) dτ and Ã′′(ωµ) ≈ − ∫

AJ(τ )ωµτ dτ ∝ −ωµ. Thus, the
prescription just requires

∫
AJ(τ ) dτ ≈ α > 0 (LTP dominates LTD in total

strength) and
∫

AJ(τ )τ dτ ≈ 1 > 0 (LTP when postsynaptic spikes follow
presynaptic ones, and LTD for the opposite order). This means that AJ(τ )

should look like Figure 1E and AW(τ ) like its negative.
For real patterns, this choice of kernels does not produce resonant oscil-

lations; in fact, it leads to instability.

3.2.2 Pattern Selectivity. We now consider an input δI+= ξe−iωt that
does not match the imprinted pattern ξµ. In general, we can decompose
it into a component along ξµ and a component in the complementary sub-
space: δI+ ≡ δI+

‖ + δI+
⊥, with δI+

‖ ≡ 〈ξµ|ξ〉ξµe−iωt ≡ N−1(
∑

j ξ
µ∗
j ξj)ξ

µe−iωt.
Then MI+ = �(ω;ωµ)I+

‖ , and

u+ = χ(ω;ωµ)δI+
‖ + χ0(ω)δI+

⊥. (3.32)

The first term will be resonant at ω = ωµ, but the second will not. Thus,
the system amplifies the component of the input along the stored pattern

Figure 3: Facing page. Pattern selectivity. (A) Response evoked on 3 of the 10
neurons of the network by input patterns a, b, and c matching the imprinted
pattern a in frequency. The class I activation functions shown in Figures 1B and
1D have been used. (B) Response amplitude |〈u+|ξµe−iωµt〉| versus input overlap
|〈ξµ|ξ〉|, under input δI+ = ξe−iωµt. Results from linearized theory (solid line)
and from models with class I (stars) and II (circles) nonlinearities. (C) Hysteresis
effects in class II simulations. The response amplitude depends on the history
of the system: the output remains at the resonance level after input withdrawl
(circles connected by dotted line). Circles connected by the solid line correspond
to the case of random or zero-overlap initial conditions. The connecting lines
are drawn for clarity only.
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relative to the orthogonal one, as shown in Figure 3. Again, nonlinearity
makes the response deviate from the linear prediction at high response am-
plitudes, reducing and enhancing the responses for the class I and II non-
linearities, respectively. Class II nonlinearity also leads to hysteresis, with
sustained responses even after the input is withdrawn, that is, |〈ξµ|ξ〉| → 0.
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The pattern selectivity can be measured by the ratio

|χ(ωµ;ωµ)|
|χ0(ωµ)| =

√
(α2 + βγ − ω2

µ)
2 + (2ωµα)2

√
�2 + ε2

, (3.33)

where we used the resonance conditions 3.14 and 3.15. When the input
frequencyωdeviates fromωµ, the pattern selectivity ratio |χ(ω;ωµ)|/|χ0(ω)|
is reduced.

3.2.3 Interpolation and Categorization. With multiple imprinted patterns,
an input δI+ = ξe−iωt that overlaps with several of them will evoke a corre-
spondingly mixed resonant linear response u+ = χ(ω;ωµ)δI+

‖ + χ0(ω)δI+
⊥,

where δI+
‖ = ∑

µ〈ξµ|ξ〉ξµe−iωt. That is, any input in the pattern subspace
produces a resonant linear response just like that to an input proportional to
a single pattern. This is a standard property of linear associative memories
for orthogonal patterns. (When the number of patterns is much smaller than
the number of units in the network, independent random patterns may be
taken as effectively orthogonal.) This feature enables the system to interpo-
late between imprinted patterns, that is, to perform an elementary form of
generalization from the learned set of patterns. This property can be useful
for input representation.

A similar property also holds in the class I nonlinear model but not in the
class II model. To see this, suppose the drive I = ξe−iωµt + c.c. overlaps two
imprinted patterns, with ξ ∝ ξ1 cosψ + ξ2 sinψ , and write the response
u+ as u+ ∝ ξ1 cosφ + ξ2 sinφ. For a linear model, φ = ψ . The class I non-
linear model gives 45◦ ≥ φ > ψ when ψ < 45◦ and 45◦ < φ < ψ when
ψ > 45◦ (see Figure 4). Thus, it tends to equalize the response amplitudes
to ξ1 and ξ2 even when they contribute unequally to the input. In contrast,
the class II nonlinear model amplifies the difference in input strengths to
give higher gain to the stronger input component, ξ1 or ξ2, thus perform-
ing a kind of categorization of the input. Thus, the two nonlinearity classes
lead to different computational properties. For the case shown in Figure 4B,
the parameters are such that the categorization is into three categories, cor-
responding to outputs near ξ1, ξ2, and their symmetric combination. For
stronger nonlinearity, bipartite classification is possible.

Another way to prevent undesirable interpolation between imprinted
patterns (or classes of them) is to store different patterns or classes at fre-
quencies that differ by more than the frequency tuning width. Suppose
ξ1e−iω1t and ξ2e−iω2t are imprinted, with ω1 �= ω2 and ξ1 · ξ2 ≈ 0. Then
we have Jij = J1

ij + J2
ij and Wij = W1

ij + W2
ij, where Jµij and Wµ

ij are given
by equations 3.5 with corresponding frequencies for µ = 1, 2. The res-
onance and stability conditions should be enforced separately for each
pattern.
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Figure 4: Input-output relationship when two orthogonal patterns, ξ1 and ξ2,
have been imprinted at the same frequency ωµ = 41 Hz. Input ξ ∝ ξ1 cosψ +
ξ2 sinψ and response u ∝ ξ1 cosφ+ξ2 sinφ. Circles show the simulation results;
lines show the analytical prediction for the linearized model. (A) Class I. (B)
Class II.

After learning, an input I+ = (ξ1 + ξ2
)e−iω1t at frequency ω1 will evoke

a response

u+ ≈ χ(ω1, ω1)ξ
1 + χ(ω1, ω2)ξ

2 ≈ χ(ω1, ω1)ξ
1
, (3.34)

since χ(ω1, ω2) � χ(ω1, ω1) by design when |ω1 − ω2| � �. Hence, as
illustrated in Figure 5, the system filters out the oscillation patterns learned
at a different oscillation frequency from the input frequency.

4 Nonlinear Analysis

Nonlinearity affects the response mainly at large amplitudes, which occur
during resonant recall but not (we assume) in learning mode. Hence, in the
following analysis, we leave the formulas for J, W, and M unchanged, ignore
nonlinearity in response components orthogonal to the pattern subspace,
and examine the corrections to the linear response u = χ(ω;ωµ)δI‖. We take
the input to be along the imprinted pattern ξµ: δI+

‖ = Iξµe−iωt. We focus on
the nonlinearity in gu, since g′

v affects only the local synaptic input, while
g′

u also affects the long-range input. Equation 2.7 then becomes

[(α − iω)2]u = Mgu(u)+ (α − iω)δI, (4.1)

where for simplicity, we include γ as a diagonal element of W, and by gu(u)
we mean a vector with components [gu(u)]i = gu(ui). Making the ansatz
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Figure 5: Categorization using different imprinting frequencies. Plotted are re-
sponses of 3 of the 10 excitatory units to various input patterns and frequencies.
Patterns ξ1e−iω1t and ξ2e−iω2t, where ξ1 ⊥ ξ2, ω1 = 41 Hz and ω2 = 63 Hz,
have been imprinted. Matched kernels are used with ÃJ(ω1) = 0.5 − 0.025i and
ÃJ(ω2) = 0.5−0.43i satisfying resonance conditions. For the mixed input (fourth
column), a = 1/

√
17 and b = 4/

√
17.

u = qξµe−iωt + c.c.+ higher-order harmonics, we have,

u3
j ≈ 3q2q∗ξµj

2
ξ
µ∗
j e−iωt + c.c.+ higher-order harmonics, (4.2)

and analogously for u5
j . The quantity q is the response amplitude of interest;

in the linearized theory, q → χ(ω;ωµ)I.
For the two nonlinearity classes (see equation 2.9), we have, respectively,

M g(u) ≈

1 − 3a|q|2

∑
j

|ξµj |4

 Mu, (4.3)

M g(u) ≈

1 + 3a|q|2

∑
j

|ξµj |4 − 5b|q|4
∑

j

|ξµj |6

 Mu. (4.4)

Thus, at a given response strength |q|, the imprinting strengths are effectively
multiplied by the factors in parentheses. Consequently, class I nonlinearity
reduces the response at large amplitude, whereas class II nonlinearity en-
hances it as long as the quadratic term in |q| is larger than the quartic one.
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A consequence for class II is the fact that a system that is very close to
resonance (ε,� → 0) in the linear regime can become unstable at higher
response levels. The system will then jump to a new state in which the (neg-
ative) quartic term in equation 4.4 is large enough that stability is restored,
as seen in Figures 2 and 3.

Substituting equations 4.3 and 4.4 into 4.1 and matching the coefficients
of ξµe−iωt on the left and right sides, we obtain, for the two nonlinearity
classes, respectively,

χ−1(ω;ωµ)q + 3aB
∑

j

|ξµj |4|q|2q = I, (4.5)

χ−1(ω;ωµ)q − 3aB
∑

j

|ξµj |4|q|2q + 5bB
∑

j

|ξµj |6|q|4q =, (4.6)

where B ≡ �(ω;ωµ)/(α − iω). These equations can be solved for q. It is
apparent that in general, both the phase and the amplitude of q are modified
by the nonlinearity.

5 Effects of Synaptic Weight Constraints

Because of the excitatory character of the presynaptic unit, Jij and Wij con-
nections have to be nonnegative, a condition not respected by our learning
formula, 3.5, so far. As a remedy, one may add an initial background weight,
J̄/N or W̄/N, independent of i and j, to each connection to make it positive,




Jij = J̄/N + ∑
µ 2 Re[ÃJξ

µ
i ξ

µ∗
j ]/N ≥ 0

Wij = W̄/N + ∑
µ 2γ Re

[
ÃWξ

µ
i ξ

µ∗
j

α−iωµ

]
/N ≥ 0,

(5.1)

or delete all net negative weights, or both.
It is clear from equations 5.1 that adding a background weight is like

learning an extra patternξ0 that is uniform and synchronous, with ξ0
i = 1 for

all i, with learning kernels Ã(0)
J (ω0) and Ã(0)

W (ω0) that satisfy 2 Re Ã(0)
J (ω0) = 1

and 2γ Re[A(0)
W (ω0)/α− iω0] = 1. We assume that these kernels are the same

as those with which the patterns ξµi are imprinted, up to an overall learning
strength factor, Ã(0)

J,W(ω) = ηÃJ,W(ω), and that the imprinting frequencies
are the same: ωµ = ω0. Thus, if the ξi are of unit magnitude, in order to
guarantee that no Jij or Wij are to be negative, we need η ≥ 1.

This strategy can be effective provided that the imprinting of the uniform
extra pattern does not lead to violation of any stability condition. Since we
have assumed the imprinted patterns ξµ (µ > 0) are (roughly) orthogonal
to ξ0, we can treat the extra pattern independent of the others, and we just
have to satisfy the same stability conditions for it that we previously found
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for the imprinted patterns. That is, the singularities of χ(ω;ωµ) have to lie
in the lower half of the ω plane, where now χ(ω;ωµ) (see equation 3.13) has
to be computed from a �(ω;ωµ), which is a factor η larger than before. For
η → 1, we get no change in the stability conditions.

Nonnegativity can be more practically achieved by simply deleting the
net negative weights. For random patterns, and without background
weights J̄ and W̄, this leads to deleting half of the weights Jij and Wij ob-
tained from the learning rule, which weakens their effect, quantified by the
function �(ω;ωµ), by a factor of 2. In simulations we have found that in-
creasing the learning strength by this factor leads to results like those found
earlier when negative Jij and Wij were permitted.

Finally, we remark that negative weights can also be simply implemented
by inhibitory interneurons with very short membrane time constants.

6 Summary and Discussion

6.1 Summary. We have presented a model of learning and retrieval for
associative memory or input representation in recurrent neural networks
that exhibit input-driven oscillatory activities. The model structure is an
abstraction of the hippocampus or the olfactory cortex. The learning rule
is based on the synaptic plasticity observed experimentally, in particular,
long-term potentiation and long-term depression of the synaptic efficacies
depending on the relative timing of the pre- and postsynaptic spikes during
learning. After learning, the model’s retrieval is characterized by its selec-
tive strong responses to inputs that resemble the learned patterns or their
generalizations. Our work generalizes the outer-product Hebbian learning
rule in the Hopfield model to network states characterized by complex state
variables, representing both amplitudes and phases. Our work differs from
previous modeling in the following respects: (1) We allow that stored pat-
terns vary in both amplitudes and phases, as well oscillation frequency.
(2) We imprint input patterns into the synapses using a generalized Heb-
bian rule that gives LTP or LTD according to the relative timing of pre- and
postsynaptic activity. (3) We explore two qualitatively different functions of
the network: one (associative memory) is to classify inputs into distinct cat-
egories corresponding to the individual learned examples, and the other is
to represent inputs as interpolations between or generalizations of learned
examples.

The same model structure was used previously, with a conventional
Hebbian rule with AJ,W(τ ) ∝ δ(τ ), by two of the authors in a model for
odor recognition/classification and segmentation in the olfactory cortex (Li
& Hertz, 2000). The principal new contributions in the current work are
(1) linking the model with the recent experimental data on neural plasticity
and LTP/LTD and dissecting the role of the functional form of the learning
kernel AJ,W(τ ) in determining the selectivity to input patterns and frequen-
cies, (2) an extended analysis of input selectivity and tuning, (3) exploration
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of the two different computational functions (associative memory and input
representation) of the model, and (4) a detailed analysis of nonlinearity in
the model.

6.2 Discussion. By using both amplitude and phase to code informa-
tion, it is possible to either encode additional information or increase robust-
ness by redundantly coding the same information coded by the amplitudes.
Indeed, hippocampal place cells, which code the spatial location of the ani-
mal, fire at different phases of the theta wave depending on the location of
the animal in the place fields (Keefe & Recce, 1993). In this case, the informa-
tion encoding is redundant since the location is in principle already encoded
by the firing rates (i.e., oscillation amplitudes) in the neural population. In
our model, combined phase and amplitude coding requires matching both
the amplitude and phase patterns of the inputs with the learned inputs un-
der recall, making matching more specific. This scheme necessitates learning
both excitatory-to-excitatory connections and excitatory-to-inhibitory ones.
Thus, in a system of N coupled oscillators, the stored items are coded by 2N
variables—N amplitudes and N phases, requiring the specification of 2N2

synaptic strengths—N2 excitatory-to-excitatory synapses and another N2

excitatory-to-inhibitory ones. Omitting phase coding would require learn-
ing of only N2 synapses, for example, of the excitatory-to-excitatory con-
nections, as in previous models (Hendin, Horn, & Tsodyks, 1998; Wang,
Buhmann, & von der Malsburg, 1990).

Our model’s frequency selectivity adds matching specificity during re-
call. Furthermore, frequency matching can modulate the spiking timing
reliability, since higher- or lower-oscillation amplitudes, caused by better
or worse frequency matching, should make the firing probabilities of the
cells more or less modulated or locked by oscillation phases. Frequency de-
pendence of spike timing reliability has been observed in cortical pyramidal
cells and interneurons (Fellous et al., 2001). In our model, the frequency tun-
ing is a network property imprinted in long-range connections, although
frequency tuning as a resonance phenomenon could in principle exist in a
single neural oscillator or a local circuit.

In our model, both excitatory-to-excitatory and excitatory-to-inhibitory
synapses are modifiable. Experimentally, there is as yet little evidence con-
cerning plasticity in pyramidal-to-interneuron synapses. More experimen-
tal investigations are needed. In experiments by Bell (Bell et al., 1997, 1999),
plasticity of the excitatory-to-inhibitory synapses between parallel fibers
and medium ganglion cells in the cerebellum-like structure of the electric
fish has been observed, although these synapses are not part of a recurrent
oscillatory circuit.

We explored the constraints on the learning kernel functions AJ,W(τ ) im-
posed by the requirement of a resonant response. A condition that came up
in almost all the variants of the model that we explored was that Ã′

J(ωµ)
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should be positive in order to achieve a strong, narrow resonance. This
means, roughly, that for excitatory-excitatory synapses, LTP should domi-
nate LTD in overall strength for spike time differences smaller than 1/ωµ.

Another condition we considered was that the resonant frequency should
be the same as the driving frequency ωµ during learning. We saw that for
real patterns and learning only of the excitatory-excitatory connections,
this could not be satisfied for general ωµ. However, with learning of the
excitatory-to-inhibitory connections, it could, for a suitable (negative) value
of B̃′′

W(ωµ). For complex patterns (see equation 3.20), the imaginary parts of
both B̃J and B̃W contribute to the shift, so if they have opposite signs (of
the correct relative magnitude), the condition can be satisfied independent
of ωµ. These features should be looked for in investigations of plasticity of
excitatory-to-inhibitory synapses.

An interesting property we have identified in the model is its ability
to subserve two different computational functions: to classify inputs into
distinct learned categories and to represent input patterns as interpolation
and generalizations of the prototype examples learned.

Categorization is appropriate for associative memories and has been ap-
plied in our previous model of olfactory cortex (Li & Hertz, 2000). In this
context, interpolation between different learned patterns is not desired; in-
dividually learned odors should have specific roles. It is more desirable
to perceive individual odors within an odor mixture than to perceive an
unspecific blend.

On the other hand, interpolation is advantageous in some circumstances.
Consider an animal learning an internal representation of a region of space.
If particular spatial locations are represented as particular imprinted pat-
terns, then locations in between them will be represented as linear combina-
tions of these patterns. Thus, the network is able to represent a continuum of
positions in a natural way. Hippocampal place cells seem to employ such a
representation. A network that interpolates can generalize from the learned
place fields to represent spatial locations between the learned place fields
by superposition of the neural activities of the place cells. Because the place
fields are localized, the generalization is conservative (and thus robust).
It does not extend beyond the spatial range of the learned locations or to
regions between distant, disjoint place fields.

We showed that our network can serve one or the other of these two
computational functions, depending on the nonlinearity in the neuronal
activation functions. Class I leads to the interpolation or input representa-
tion operation mode, while class II leads to categorization. The form of g(u)
could be subject to modulatory control, permitting the network to switch
function when appropriate. The switch could even be accomplished, for a
suitable form of g(u), simply by a change in the DC input level, since it is
possible to change the effective nature of the nonlinearity near the operating
point by shifting the resting point. It seems likely to us that the brain may
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employ different kinds and degrees of nonlinearity in different areas or at
different times to enhance the versatility of its computations.

We have seen that it is possible to store different classes of patterns at
different oscillation frequencies and that the network does not interpolate
between patterns stored at different frequencies. This feature can increase
the capacity of the network and gives the system the possibility of per-
forming several different forms of input representation or categorization
without interference between them. For instance, all place fields could be
stored at one frequency, while odor memories could be stored at another,
and there would be no cross talk between the two modalities if the fre-
quencies differed by much more than the resonance linewidth. Complex
neuromodulatory mechanisms that control the frequency of hippocampal
oscillations (Fellous & Sejnowski, 2000) could be involved in implementing
this scheme.

In conclusion, we have seen that this rather simple network is endowed
with interesting computational properties that are consequences of the com-
bination of its oscillatory dynamics and the spike-timing-dependent synap-
tic modification rule. Although experiments to date have not clearly uncov-
ered examples of networks in the brain that function in just this fashion,
we hope that our findings here will stimulate further investigation, both
theoretical and experimental.
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