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ABSTRACT: We show that a model of the hippocampus introduced
recently by Scarpetta et al. ([2002], Neural Computation 14(10):2371–
2396) explains the theta phase precession phenomena. In our model,
the theta phase precession comes out as a consequence of the associa-
tive-memory-like network dynamics, i.e., the network’s ability to
imprint and recall oscillatory patterns, coded both by phases and ampli-
tudes of oscillation. The learning rule used to imprint the oscillatory
states is a natural generalization of that used for static patterns in the
Hopfield model, and is based on the spike-time-dependent synaptic plas-
ticity, experimentally observed.
In agreement with experimental findings, the place cells’ activity

appears at consistently earlier phases of subsequent cycles of the ongoing
theta rhythm during a pass through the place field, while the oscillation
amplitude of the place cells’ firing rate increases as the animal approaches
the center of the place field and decreases as the animal leaves the center.
The total phase precession of the place cell is lower than 3608, in agree-
ment with experiments. As the animal enters a receptive field, the place
cells’ activity comes slightly less than 1808 after the phase of maximal pyr-
amidal cell population activity, in agreement with the findings of Skaggs
et al. ([1996], Hippocampus 6:149–172). Our model predicts that the theta
phase is much better correlated with location than with time spent in the
receptive field. Finally, in agreement with the recent experimental findings
of Zugaro et al. ([2005], Nature Neuroscience 9(1):67–71), our model pre-
dicts that theta phase precession persists after transient intrahippocampal
perturbation. VVC 2005 Wiley-Liss, Inc.
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INTRODUCTION

In this paper we will show how the model of the hippocampus intro-
duced in Scarpetta et al. (2002) is able to explain the theta phase preces-
sion phenomena: the observation that oscillation phases of the activities
of hippocampal place cells systematically shift relative to the theta rhy-
thm as the animal traverses the place fields (O’Keefe and Recce, 1993;
Skaggs et al., 1996).

The first part of the paper reviews the model, its learning rule, and
the recall dynamics. Briefly, the learned states of the model are encoded

by both the amplitudes and the phases of the oscillating
neural populations, enabling more efficient and robust
information coding than in conventional models of
associative memory. The learning rule to imprint such
oscillatory states is a natural generalization of that used
for static patterns in the Hopfield model, and is based
on the spike time dependent synaptic plasticity (STDP)
observed experimentally. In particular, long-term poten-
tiation (LTP) and depression of the synaptic efficacies
depends on the relative timing of the pre- and post-
synaptic activities during learning. A further step is in-
troduced to allow imprinting of correlated patterns
properly.

The second part of this paper shows how the model
accounts for theta phase precession observed in rat hip-
pocampus. During learning of each spatial location, our
model imprints an oscillatory pattern of specific ampli-
tude and phase relationship between neurons by modi-
fying neural synaptic connection strengths. After learn-
ing, the networks’ response to external inputs reveal the
encoded phase information, and thus phase precession,
even though the external inputs do not have the phase
information. The phase precession effect comes out
from the crucial ability of our model to store both the
amplitudes relationship and the phases relationship of
the oscillatory patterns in the synaptic connections.
Both the bell-shaped firing tuning curves (receptive
fields) and the phase precession phenomena are a result
of the network synaptic connections. In particular, the
phase precession is an effect of the overlap between the
imprinted place fields: if adjacent receptive fields do not
overlap, the firing tuning curve of each place cell is pre-
served but the phase precession does not occur.

The model agrees with the observation (Skaggs et al.,
1996) that the first spikes, as the animal enters the
receptive field, come near the phase of the minimal pyr-
amidal population average activity. The total phase pre-
cession of the place cells can be close to 3608, but not
larger than 3608, as found by O’Keefe and Recce
(1993) and Skaggs et al. (1996). In our model, the theta
phase of the place cell is a function of the animal loca-
tion, almost insensitive to the animal’ running speed
(for speeds that do not exceed a critical value related to
the network connections and parameters), and there-
fore, the theta phase shows a better correlation with the
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animal’ location than with time, in agreement with the experi-
mental results of O’Keefe and Recce (1993) and Huxter et al.
(2003).

Numerous computational models (Burgess et al., 1994; Jen-
sen and Lisman, 1996; Tsodyks et al., 1996; Wallenstein et al.,
1997; Bose et al. 2000; Booth and Bose, 2001; Lengyel et al.,
2003; Yamaguchi, 2003) have attempted to account for the
mechanisms that underlie the phase precession observation, but
a fully-satisfactory explanation is still lacking. Recently, to con-
trast the predictions of different models of phase precession,
Zugaro et al. (2005) have transiently turned off neuronal dis-
charges for up to 250 ms and reset the phase of theta oscilla-
tions by stimulating the commissural pathway in rats. After
recovery from silence, phase precession continued: the theta
phase of the place cell immediately after the recovery was corre-
lated with the new location of the animal, despite the transient
silence and the theta phase reset. Our model is in agreement
with these recent experimental findings.

THE MODEL

The model structure and elements are based on the physio-
logical and anatomical findings in the CA3 hippocampal
region. These regions contain the principle pyramidal cells and
the inhibitory interneurons. The pyramidal cells project long-
range axons to other pyramidal cells and interneurons, whereas
the interneurons project more locally. The model is based on
the one introduced and analyzed by one of us with Li Zhaop-
ing and John Hertz in a recent paper (Scarpetta et al. 2002).
We review here its main features, more details can be found in
the paper aforementioned. The state variables, modeling the
membrane potentials, are u ¼ fu1; :::; ung and v ¼ fv1; :::; vng
respectively for the excitatory and inhibitory units. (We denote
vectors by bold fonts.) The unit outputs, representing the prob-
abilities of the cells firing (or instantaneous firing rates), are
given by guðu1Þ; :::; guðunÞ and gvðv1Þ; :::; gvðvnÞ, where gu and
gv are sigmoidal activation functions that model the neuronal
input–output relations. The equations of motion are

_ui ¼ �aui � b0
i gvðviÞ þ

X
j

J 0ij guðujÞ þ I 0i

_vi ¼ �avi � g0i guðuiÞ þ
X
j 6¼i

W 0
ij guðujÞ ð1Þ

where a�1 is the membrane time constant (for simplicity
assumed the same for excitatory and inhibitory units), J 0ij is the
synaptic strength from excitatory unit j to excitatory unit i,
W 0

ij is the synaptic strength from excitatory unit j to inhibitory
unit i, b0

i and g0i are the local inhibitory and excitatory con-
nections within the E-I pair i, and Ii

0(t) is the net input from
other parts of the brain. The model units represent local popu-
lations of biological neurons that share common input, so the
number of neurons represented by an excitatory unit may be
different from the number of neurons represented by an inhibi-

tory unit. In this minimal model, we omit inhibitory connec-
tions between pairs, since the real anatomical long-range con-
nections appear to come predominantly from excitatory cells.
The sensory input Ii

0(t) to the system, which drives the excita-
tory units, has a static part �Ii and an oscillatory part Ii(t)
modulated at the theta frequency. The static part �I of the input
determines a fixed point ð�u; �vÞ, given by the solution of equa-
tions _u ¼ 0 and _v ¼ 0 with I0 ¼ �I.

Linearizing Eqs. (1) around the fixed point leads to

_ui ¼ �aui � bivi þ
X
j

Jijuj þ Ii

_vi ¼ �avi � giui þ
X
j

Wijuj ð2Þ

where ui and vi are now deviations from the fixed point, I �
I0 � �I is the oscillatory part of the sensory input, bi ¼ g 0vð�viÞb0

i ,
gi ¼ g 0uð�uiÞg0i , Wij ¼ g 0uð�ujÞW 0

ij , Jij ¼ g 0uð�ujÞJ 0ij . Henceforth, for
simplicity, we assume bi ¼ b, gi ¼ g, independent of i.

Eliminating the vi from (2), we have the second-order differ-
ential equation:

€u ¼ ð2a� JÞ _uþ ½a2 � aJþ bðgþWÞ�u ¼ ð@t þ aÞI ð3Þ

(we use sans serif to denote matrices) or, equivalently,

½ð@t þ aÞ2 þ bg�u ¼ Muþ ð@t þ aÞI ð4Þ

where

M ¼ ð@t þ aÞJ� bW: ð5Þ

The terms in the square brackets describe the local E-I pair
dynamics, while M gives an effective coupling between the
oscillating E-I pairs. Learning imprints patterns into M through
the long-range connections J and W. After learning, u depends
on how I decomposes into the eigenvectors of M. Thus, the
network can selectively amplify or distort I in an imprinted-
pattern-specific manner and thereby functions as input map-
ping into the subspace spanned by the imprinted patterns.

Following Scarpetta et al. (2002), we distinguish a learning
mode, in which the oscillatory patterns are imprinted while the
connections J and W are ineffective, from a recall mode, in
which connection strengths are effective and fixed. With appro-
priate learning kernel, as shown in the following, the network
during recall responds strongly (resonantly) to inputs similar to
those learned or linear combinations of them, and weakly to
other inputs not related to the imprinted patterns. The phases
and the amplitudes of the oscillatory response will be a linear
combination of the phases and the amplitudes, respectively, of
the imprinted oscillations recalled by the input.

Learning Oscillatory Patterns

First, let us imprint a single oscillatory pattern, PlðtÞ ¼
nle�ix0t þ c:c: where c.c. denote complex conjugate, and nl is
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a complex vector with components nlj ¼ jnlj jei/
l
j . Following

Scarpetta et al. (2002), the synaptic strength Jij is shaped by
the correlations of the activities, uj(t

0) and ui(t), in presynaptic
and postsynaptic cells through

Jij ¼ 1

NT

Z T

0

dt
Z 1

�1
dt 0uiðtÞAJ ðt � t 0Þujðt 0Þ ð6Þ

where AJ ðt � t 0Þ is the learning kernel that measures the
strength of the synaptic change at time delays s ¼ t � t 0

between the presynaptic and postsynaptic activities. In the case
when AJ ðt � t 0Þ ¼ dðt � t 0Þ the learning rule becomes the con-
ventional Hebbian learning with Jij /

R
dt uiðtÞujðtÞ used in Li

and Hertz (2000). To model the experimental results of STDP
(Markram et al., 1997; Bi and Poo, 1998), the kernel A(s) is
taken as an asymmetric function of s, mainly positive (LTP)
for s > 0 and mainly negative (LTP) for s < 0. Analogously
for the synaptic strength Wij we write

Wij ¼ 1

NT

Z T

0

dt
Z 1

�1
dt 0viðtÞAW ðt � t 0Þujðt 0Þ: ð7Þ

Since the connections J and W are ineffective during learning,
the responses ui and vi are proportional to the imprinting input
Pl
i ðtÞ. Substituting them into eqs. (6) and (7) yields connections:

Jlij ¼
2

N
Re½ ~AJ ðx0Þnli nl�j �

W l
ij ¼

2g

N
Re

~AW ðx0Þ
a� ix0

nli n
l�
j

� �
; ð8Þ

where star indicates the complex conjugate and

~AJ ;W ðxÞ ¼ jv0ðxÞj2
Z 1

�1
dsAJ ;W ðsÞe�ixs ð9Þ

with

v0ðxÞ ¼
a� ix0

a2 þ bg� x2
0 � 2ix0a

: ð10Þ

Note that Im ~AJ ;W ðxÞ ¼ 0 if AJ ;W ðsÞ is symmetric in s and
that Re ~AJ ;W ðxÞ ¼ 0 if AJ ;W ðsÞ is antisymmetric. The depend-
ence of the neural connections J and W and the oscillator cou-
plings M on nli n

l�
j is just a natural generalization of the Hebb–

Hopfield factor nli n
l
j for (real) static patterns. This becomes

particularly clear for kernels satisfying the following matching
condition:

~AJ ðx0Þ ¼ bg

a2 þ x2
0

~AW ðx0Þ at x ¼ x0: ð11Þ

Then the oscillator coupling simplifies into a familiar outer-
product form for complex vectors n:

Ml
ij ¼ �2ix0

~AJ ðx0Þnli nl�j =N : ð12Þ

In the following, we will always consider the case of match-
ing kernels (11).

We are interested in generalizing Eqs. (8) and (12) to the
case in which multiple correlated patterns have to be
imprinted. To construct the corresponding matrices for multi-
ple patterns, nl, l ¼ 1, . . ., N, we use the rule proposed by
Personnaz et al. (1985) and Diederich and Opper (1987) (see
also Hertz et al., 1991) for learning static correlated patterns
without errors in the Hopfield model. Thus we write, for N,
linearly independent, correlated patterns nl,

Jij ¼ Re
X
lv

~Aðx0Þnli ðQ�1Þlvnv�j
 !

ð13Þ

where the N 3 N matrix Q, defined by

Qlv ¼ 1

N

X
j

nl�j nvj ð14Þ

is the natural generalization of the correlation matrix Q used
by Personnaz et al. (1985) and Diederich and Opper (1987)
for the Hopfield model. Rule (13) is not local and not iterative.
However, it has been proved in Diederich and Opper (1987)
that, in the Hopfield framework, there exists a local rule that
uses only successive presentation of one pattern at a time that
converges exactly to the synaptic efficiencies obtained with the
Q-rule. It is possible to generalize their procedure, and obtain
the same result also in our case. In the following, we have used
rule (13). With rule (13), we imprint N oscillatory patterns
Pl ¼ nleix0t , all with the same frequency x0. Then the M
matrix becomes

Mij ¼ 1

N

X
lv

�2ix ~AJ ðx0Þnli ðQ�1Þlvnv�j : ð15Þ

The Recall Mode

In the recall mode the network dynamics is governed by
the matrix M, learned during the learning mode. Keeping in
mind Eq. (15), it is clear that the imprinted oscillations (even
though not orthogonal) are eigenvectors of the connection
matrix M,

Mng ¼ �2ix0
~Aðx0Þng: ð16Þ

Thus, after the transient (which is governed by the network’s
reaction time that depends both on the membrane time con-
stant of the neurons, a, and the network’s synaptic connec-
tions), the response u to an input I that perfectly match one of
the imprinted vector is

u ¼ vI ð17Þ

with the linear response coefficient (or susceptibility)

v ¼ a� ix0

a2 þ bg� x2
0 � 2ix0aþ 2ix0

~Aðx0Þ
: ð18Þ
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A properly chosen learning kernel AðtÞ satisfying
a2 þ bg� x2

0 þ 2ix0Re½ ~Aðx0Þ� ! 0

a� ½ ~Aðx0Þ� ! 0þ ð19Þ

would produce a very strong susceptibility v and thus a reso-
nant response to matching input. Meanwhile, an input pattern
I outside the subspace of the imprinted vectors evoke a weaker
response u ¼ v0I. In general, an input I ¼ neixt that overlaps
with several imprinted patterns will evoke a correspondingly
mixed resonant response

ð20Þ
where and

This feature enables the system to interpolate between imprinted
patterns, and to perform an elementary form of generalization
from the learned set of patterns. As it will be shown in the next sec-
tion, the phase precession as the animal moves from one location
to the other is related to this interpolation mechanism.

An example of learning kernel A(s) that satisfy the resonance
conditions (19) at frequency x0 ¼ 10 Hz (theta range) is shown in
Figure 1. In agreement with the STDP experimental findings
(Markram et al., 1997, Bi and Poo, 1998), this learning kernel is
an asymmetric function of s, mainly positive (LTP) for s > 0 and
mainly negative (LTD) for s < 0. This learning kernel is able to
imprint oscillations with frequency x0 ¼ 10 Hz, and to make the
network resonant at theta frequencies. It could be of interest to
note that the kernel A(s) shown in Figure 1 satisfies the resonance
condition also at x0 ¼ 40 Hz, i.e., in the gamma range. However,
we will not exploit this last property in this paper.

IMPRINTING LOCATIONS AND THE THETA
PHASE PRECESSION

Let us consider N locations, xl, arranged in a 1-dimensional
space with periodic boundary conditions (such as in a circular

or triangular track). For each of these N locations xl, l ¼
1, . . ., N, we imprint, in the synaptic strengths of the network,
an oscillating pattern Pl, with specific amplitude and phase

relationship between its components. Using Eq. (13) to imprint

N (linearly independent) patterns, one need a number of net-

work units n > N. In the following, we use a network with
n ¼ 2N excitatory units and the same number of inhibitory

units, that follows the equation of motion (1). For each loca-

tion xl an oscillating pattern P l, whose amplitude profile is

peaked in the excitatory unit 2l, is imprinted in the network.

In particular, the imprinted pattern associated with location xl
has components Pl

j ðtÞ ¼ nlj e
�ix0tþ c:c:, l¼1, 2,. . .,N, j ¼ 1,

2, . . ., 2N, where nlj ¼ Að2l� jÞei/ð2l�jÞ; the amplitudes A

and the phases / of the pattern nil on each unit j are func-

tions of the distance between the unit j and the unit 2l that is
associated with location xl. In particular, A( ) is an even func-

tion decreasing quickly with distance, while /( ) is an odd

function. This means, when imprinting a location xl, only

units located close to unit 2l are excited by the imprinting
inputs. In such a manner, after the learning process, the N exci-

tatory units u2l, which we will call place cells, will be associ-

ated with a receptive field centered at xl, for l ¼ 1, 2, . . ., N.
The other N units (with odd index, called auxiliary units) are

necessary to allow the network to store the N desired patterns
properly. In all the simulations, we used A(0) ¼ 1, A(61) ¼
0.3, A(62) ¼ 0.3, A(x) ¼ 0 otherwise, and /(0) ¼ 0, /(61) ¼
+2.4 rad and /(62) ¼ +2.5 rad. The network has a quite

robust behavior with respect to the choice of the functions
A and /.

In our model, the external inputs in the recall mode resem-

bles but are not exactly the imprinted patterns. When the ani-

mal is exactly at location xl, the input pattern I is given by

I ¼ Lle�ix0t where Ll is a vector with components Llj ¼ dj;2l.
This pattern conveys the animal location in the amplitude

modulation but has no phase-coded information. When the

animal is at position x between location xl and location xlþ1,

FIGURE 1. A: Example of a learning kernel A(s) that satisfy the resonance conditions 18,
at frequency x0 = 10 Hz. (Parameters c = b = 0.2 ms21, a = 0.14 ms21). The real (B) and the
imaginary (C) part of its Fourier transform. In all the simulations we used the learning kernel
shown in (A).
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xl < x < xlþ1, we take the input vector as linear combination
of Ll and Llþ1,

Lx ¼ ð1� jx � xljÞLl þ jx � xljLlþ1: ð21Þ

L is then normalized. Thus, if the animal moves from loca-
tion xl at time t ¼ 0 to the adjacent one xlþ1 with speed
v(t), the current location will be a function of time
xðtÞ ¼ xl þ

R t
0 vðtÞdt , and the input vector will be expressed

by Eq. (21), where x is replaced by x(t). The vector L is always

normalized. Figure 2B shows the input amplitude Lj(t) when
the animal moves along the track with constant speed.

An animal at location x receives an input pattern Lx that
resembles imprinted pattern nl for xl � x. Hence, the network
response to input Lx would amplify the imprinted pattern nl

that resembles mostly Lx (see previous section), and thus,
exhibits in the responses the nontrivial phase relationship
among units that was stored in the couplings. When the animal
is in between two stored locations, the response will be a com-
bination of the two imprinted patterns (see Eq. (20)), and in
particular, the phase of the response will be a combination of

FIGURE 2. Simulation of the network dynamics when animal
is moving continuously in time with constant running speed v =
1/(200 ms). A: The two subplots show the activities (in dotted
line) of two place cell units (uj, j = 10, 12, whose place fields are
centered at 5 and 6, respectively) as a function of time. Solid line
show the ongoing theta rhythm activity (computed as the mean
field of the excitatory activity of all the networks). The external
input to the units is Ij(t) = Lj(t) cos(x0t), where the amplitude
Lj(t), shown in (B), is maximum when the animal is in the center

of the receptive field of that unit j. Note that each place cell unit
shows phase precession, i.e., relative phase shift between u(t)
(dotted) and the theta activity (solid), as the animal enters and
then leaves the place field of this unit. Same behavior for all other
place cells is not shown. C: Theta phase as a function of the cur-
rent position of the animal, and amplitude of oscillation as a func-
tion of current animal position, for the place cell centered in loca-
tion 5. Theta phase is a bit less than 1808 when the animal enters
the receptive field, and the total phase precession is less than 3608.
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the phases of the two imprinted overlapping patterns, which
depends from the animal position. So, even though the input
carries information about current location only in the ampli-
tudes modulation, the associative memory nature of our model,
having phase-coded locations imprinted in the synaptic cou-
plings, allows the network to show both amplitude- and phase-
coded informations in the response.

Since the theta rhythm is the local field potential, in our
model it is simply the mean field. We compute the theta
rhythm doing the average of all the excitatory units activities
MF ¼ 1=2N

P2N
j¼1 ujðtÞ. This choice allows us to compare the

absolute phase of theta at which place cells fire during the place
field traversal with the experimental findings of Skaggs et al.
(1996). Indeed, the phase zero of the theta rhythm in the
experimental work of Skaggs et al. (1996) is defined to be the
point in the theta cycle corresponding to the maximal pyrami-
dal cells population activity (i.e., the average over the entire
dataset of pyramidal cells), and the EEG is opportunely shifted
to agree with this definition of theta rhythm phase.

SIMULATION RESULTS AND COMPARISONS
WITH EXPERIMENTAL FINDINGS

In all simulations reported here, we used the kernel A(s)
shown in Figure 1 that satisfy the constraints (19) when x0 ¼
10 Hz, i.e., when the frequency is in the theta range.

After having imprinted N ¼ 10 locations in the net with n ¼
20 excitatory units, we simulate the network dynamics while the
animal moves continuously in space. Figure 2A shows in dotted
lines the activity of the two place cell units (u2l with l ¼ 5, 6),
as a function of time, while the animal moves with constant
running speed. Solid lines show the theta rhythm computed as
the mean field of all the excitatory units of the network.

The simulation is done at a constant animal speed v ¼ 1/
400 ms (note that space is nondimensional in our framework,
and a unitary distance correspond to the distance between the
centers of two adjacent receptive fields). The oscillatory input
on each unit j is Ij(t) ¼ Lj(t) cos(x0t), where the amplitude

FIGURE 3. Effects of nonlinearity in the phase precession
phenomena dynamics. A. Simulation of the network dynamics
using the nonlinear activation function showed in (B), when ani-
mal is moving continuously in time with constant velocity v = 1/
200 ms21 as in previous figure. Dotted curve shows the place cell
activity as a function of time. Solid curve shows the theta rhythm.

Results are affected by nonlinearity mainly at large amplitude, but
the theta phase precession is preserved, as shown in (C) showing
the theta phase as a function of position, and amplitude of oscilla-
tion as a function of position for the place cell with receptive field
centered in 5.
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Lj(t) is shown in Figure 2B as a function of time. The figure
shows that, for each place cell, the oscillation amplitude of the
firing rate increases as the animal approaches the center of its
place field and decreases as the animal leaves the center (firing
tuning curve), while the place cell phase advanced at consistently
earlier phases of the theta cycle as the animal pass through the
cell’s receptive field (phase precession). To quantify the phase
precession phenomena, we compute the phase shift between the
theta rhythm and the place cell activity in each cycle, and we plot
in Figure 2C the theta phase as a function of the animal’s position
during running, together with the amplitude modulation.

The model dynamics is in agreement with the experimental
evidence of theta phase precession in two main points: (1) the
total phase precession is less than 3608 (O’Keefe and Recce,
1993; Skaggs et al., 1996); and (2) as the animal enters the
receptive field the absolute phase of the cell activity with
respect to the phase of maximal excitatory units population
activity (theta rhythm) is slightly less than 1808, in agreement
with experimental finding of Skaggs et al. (1996).

Effects on nonlinearity in our general model have been ana-
lyzed in Scarpetta et al. (2002), where we distinguished two
class of nonlinearity. For the nonlinearity of class I (as the sig-
moidal function shown in Fig. 3B), we expect that the nonli-
nearity do not change critically the linear results. Indeed, com-
paring the linear case in Figure 2 with the nonlinear simula-
tions results shown Figure 3, we see that the dynamics is
affected by the nonlinearity at large amplitudes but the phase
precession is very well preserved.

To check whether in our model the theta phase is better cor-
related with position than with time, we simulate the network
dynamics with different values of the animal’ running speed. In
Figure 4, the theta phase is shown as a function of the animal’
position when animal runs with three different speeds (v ¼ 1/
800 ms�1 black squares, v ¼ 1/400 ms�1 triangles, and v ¼
1/200 ms�1 gray circles). As we expect, the theta phase is a
unique function of the animal position, almost insensitive to
the running speed, as long as the reaction time of the network

is short compared with the time characteristic of the animal
movement. Whereas, when the speed is large the inertia-like
effects becomes significant and a (small) dependence from the
speed appears (gray circles follow a line with a higher slope) in
the second half of the receptive field.

From Figure 4, we see that, when there is a variability in the
running speed, the phase shows a better correlation with posi-
tion than with time. This is in agreement with experimental
results of O’Keefe and Recce (1993) and Huxter et al. (2003).

Finally, to test our model, we compare it with the recent
experiments of Zugaro et al. (2005). We have simulated the
effect of a perturbation that silences all units (both excitatory
and inhibitory ones) and reset the phase of theta rhythm. The
activity of two place cells, before, during, and after the network
perturbation, is shown in Figure 5. The perturbation last for
200 ms. Despite the theta phase reset and the transient inter-
ruption of firing, the theta phase of the first cycle after the
recovery is more advanced than the theta phase of the last cycle
before the perturbation, as in the experiments (Zugaro et al.,
2005). To quantify the degree of conservation of the phase pre-
cession and the effect on the amplitudes of oscillation, we show
in Figure 5 the plot of the theta phase as a function of the
position, and the amplitude of the oscillation vs. the animal
position. Figure 5C should be compared with Figure 2 in
Zugaro et al. (2005).

Finally, Figures 6 and 7 show the synaptic connections Jik
and Wij learned in our model, as a function of presynaptic cell
index k, for a postsynaptic place cells (i even) and an auxiliary
units (i odd). As expected, the synaptic connections are transla-
tion invariant, so Jij depend only on the difference i � j and
on the parity of i (even or odd). We note that connections have
both positive and negative values. Since they are supposed to
be projections from excitatory pyramidal cells, the negative
connections weights means effectively inhibitory connections,
which could be implemented by additional inhibitory inter-
neurons with very short membrane time constant. Note that
the synaptic weights are highly asymmetric.

FIGURE 4. Theta phase of the place cell as a function of the
animal position (A), and as a function of the time spent in the
place field (B) at three different animal running speeds. During
the place field traversal, for each cycle, we compute the phase of
the place cell with respect to the theta rhythm. In each of the

three simulations, the animal is moving continuously in time
with constant speed. The gray circles correspond to speed v = 1/
200 ms21, the red triangles to v = 1/400 ms21, and the black
squares to v = 1/800 ms21. Figure shows that the theta phase is
much better correlated with position than with time.
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Furthermore, note that in our model the activity of all the units,
both excitatory and inhibitory units, is modulated at the theta fre-
quency. The network shows resonance in the theta range, and the
inhibitory units, similarly to the place cells, exhibit phase preces-
sion (not shown), while the auxiliary units have a very weak place
field with very little phase precession (not shown).

CONCLUSIONS AND DISCUSSION

In this paper we propose a theoretical model for theta phase
precession in the hippocampus by applying a framework (Scar-
petta et al., 2002) that is a generalization of the Hopfield

FIGURE 5. Phase precession persist after transient perturba-
tion. Despite the theta phase reset and the transient interruption
of firing, the phases were still correlated with the spatial position
of the animal immediately after the recovery, in agreement with
experiments (Zugaro et al. 2005). A: Simulation of the network
dynamics when animal is moving continuously in time with con-
stant velocity v = 1/200 ms21 but a perturbation that silences all
units (both excitatory and inhibitory ones) and reset the phase of
theta rhythm is applied for 200 ms. Black solid curves show the

theta rhythm. The dotted red line shows the activity of the place
cells before during and after the network perturbation (place cell
us, centered in location 4, in the upper subplot, and place cell u10,
centered in 5, in the lower subplot). The theta phase and the firing
amplitude are shown as a function of animal position when per-
turbation was applied, and in control conditions (i.e., without any
perturbation), for the place cell centered in 4 (B) and the one cen-
tered in position 5 (C).
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model to oscillatory patterns. The learning rule is a generaliza-
tion of the Hebb prescription, inspired to the STDP.

The associative memory behavior of our model, with inter-
polation capabilities, allows the network to show both ampli-
tude and phase-coded informations in response to inputs that
carry information about current location only in the amplitudes
modulation.

Our model dynamics is in agreement with the experimental
evidence of theta phase precession in three main points:

1. The model accounts for the observations that after a pertur-
bation that transiently turned off neuronal discharges for a cou-
ple of theta cycles and reset the phase of the theta oscillations,
the phase precession continued (Zugaro et al., 2005). This hap-
pens in our model, even if the external input to the network is
silenced during the perturbation. This comes naturally from
the fact that in our model, the oscillation phase of a place cell
depends on both the network connections and the external
input strength. Hence, when the external input strength repre-

sents the spatial location (relative to the center of the place
field), the oscillation phase of the place cell will, by the influ-
ence of the network connections, code the location relative to
the center of the place field.
2. In our model, the theta phase depends on current position
of the animal, and is only slightly sensitive to the animal speed
(almost insensitive at low speeds). Therefore, in our model, the
theta phase is better correlated with position than with time
spent in the place field, in agreement with experimental data
(O’Keefe and Recce, 1993; Huxter et al., 2003). This is
achieved without need of any speed-dependent input, in con-
trast with the recent model of phase precession (Lengyel et al.,
2003) that assumes a differential input proportional to the
instantaneous velocity of the animal.
3. Both the initial theta phase as the animal enters the place
field and the total phase precession generated by our network
dynamics, are in quantitative agreement with experimental evi-
dence. In our model the total phase precession is less than

FIGURE 6. Jjk connection after learning N = 10 locations, as a function of k. On the left,
i = 10, and on the right, i = 11.

FIGURE 7. Wik connection after learning N = 10 locations, as a function of k. On the left,
i = 10, and on the right, i = 11.

THETA PHASE PRECESSION AS A NETWORK EFFECT 9



3608, and the absolute phase of the cell activity with respect to
the average pyramidal cells activity, when the animal enters the
place field, is slightly less than 1808, in agreement with experi-
ments of Skaggs et al. (1996). Note that our definition of the
theta rhythm as the average activity of all the excitatory units is
in agreement with the definition used by Skaggs et al. (1996).

Finally note also that our model predicts both a monotonic
phase precession and a unimodal firing tuning curve with a
large amplification factor when the animal is in the center of
the place field. This is in contrast with some other models. For
example, models in which both firing rate and phase are linear
or monotonic functions of the same parameter (Booth and
Bose, 2001; Magee, 2001) produce a monotonically increasing
firing rate inside the place field if monotonic phase precession
is preserved, or nonmonotonic phase precession if unimodality
of the firing profile is to be preserved.

Although there is some controversy as to whether theta phase
precession is linear (O’Keefe and Recce, 1993) or whether theta
phase is an accelerating function of position (Skaggs et al.,
1996; Yamaguchi et al., 2002), and whether it is smooth or
clusterized, its trend is undoubtedly monotonic (O’Keefe and
Recce, 1993; Skaggs et al., 1996; Yamaguchi, 2002), since there
is a systematic progressive phase retardation as the animal
passes through the place field.

In contrast, experimental data indicates that firing rate
changed in a nonmonotonic waxing–waning manner (O’Keefe
and Recce, 1993; Skaggs et al., 1996), even though there is
some controversy as to whether phase precession accompanies
skewed firing profiles (Harris et al., 2002; Metha et al., 2002)
or not (Huxter et al., 2003).

Our model shares some similarities to the one of Tsodyks
et al. (1996), since both are based on the associative memory
properties of the network. In contrast with the Tsodyks et al.
(1996) work, here the couplings are computed using a mathe-
matical learning rule and the network dynamics is studied ana-
lytically in a framework (Scarpetta et al., 2002) that is the gen-
eralization of the Hopfield model to the case of nonstatic but
oscillatory patterns.

A point of our model that still needs investigation is the ori-
gin of the imprinted patterns used during the learning mode.
Of course, if there is no phase differences between units in the
imprinted patterns, there would be no phase precession despite
of learning and network dynamics. We are currently investigat-
ing how such phase differences arise in the imprinted patterns
during learning, i.e., if they are generated by an initial asymme-
try of the connections that produces the phase shift among
units when the animal is moving, or if they are inherited from
earlier stages input during learning. Anyway, what we have pro-
ven here is that when the network is equipped with such a syn-
aptic connectivity the network dynamics shows phase preces-
sion and phase-coded response to sensory input that do not
have any phase difference between units activities.

It has previously been suggested that phase coding occurs in
the sensory input to the place cells (Burgess et al., 1994), and
it has been shown that under that model individual place cells

will show phase precession vs. the average place cell activity
(Burgess et al., 1993), as in our model. A difference with their
model is that, even if we use a phase-coded activity during
learning, once the network is equipped with the proper synap-
tic couplings, the phase precession occurs, when the animal
run, without need of any phase coding in the sensory input.
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