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All information about the RBPM in the large-q limit
is contained in the OPTIMAL SET G*

0 THERMAL PROPERTIES ARE CALCULATED FROM ¢*
[1 free energy, internal energy, specific heat,...
[0 MAGNETIZATION AND CORRELATION FUNCTIONS ARE OBTAINED FROM
THE GEOMETRICAL STRUCTURE OF G*
[0 C'(r), average correlation function, is related to the distribution of clusters
[1 m, magnetization, is the fraction of sites in the infinite cluster

[1 &, correlation lenght, is the average size of the clusters
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‘maximize O I

One has to find the max over the 2/ Z| possible configuration !
¢* is a supermodular function = ¢(A) +¢(B) < p(AUB)+p(ANB) VA, Be E
theorem of discrete math = - a combinatorial optimization method to maximize it in polynomial time

for () of the Potts model a specific algorithm has been formulated
Angles d’Auriac et al.JPA35, 6973 (2002)
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the two cases are degenerate = PHASE COEXISTENCE

[ Introducing DISORDER new types of Optimal Diagrams will appear
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OS at high temperature

linear size L = 24; disorder strength 0 = 0.875
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Percolating Cluster
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linear size L = 24; disorder strength 6 = 0.875
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OSat’l = 3.122
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OoSat7' — 0

linear size L = 24; disorder strength 6 = 0.875



‘Phase Diagram - 2 D I
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Exact Result: 1. =2 < J > Wu, RMP 54, 235 (1982)

IN 2D DISORDER DESTROY PHASE COEXISTENCE => it softens the 15¢ order PT into a 2™¢ order PT

19



1.2

1.1

0.9

T<J>/d

0.8

0.7

0.6

‘ Phase Diagram - 3 D I

B c % i
I disordered phase :
[ ordered phase + |
L below percolation regime |
breaking
- strength
- ordered phase
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Mercaldo, Anglés d’Auriac, 1gloi, Europhys. Lett. 70, 733 (2005)

T'. is not known from theory in 3D !

IN 3D WEAK DISORDER DOES NOT DISTROY PHASE COEXISTENCE

i.e. disorder has to be strong enough to soften the PT into 2" order PT
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Mercaldo, Anglés d’Auriac, 1gloi, Europhys. Lett. 70, 733 (2005)

T'. is not known from theory in 3D !

IN 3D WEAK DISORDER DOES NOT DISTROY PHASE COEXISTENCE

i.e. disorder has to be strong enough to soften the PT into 2" order PT

= 04 = 0.658 = 0.002
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‘ Magnetization and fractal properties of the percolating cluster I

At the critical point the largest cluster of G* is a fractal and its mass M ~ L%/ [df =d—

g
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According to scaling theory, cumulative distribution of the mass of the cluster

R(M,L) = M~TR(M/L%)
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At the critical point the largest cluster of G* is a fractal and its mass M ~ L%/ [df =d— — J
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According to scaling theory, cumulative distribution of the mass of the cluster

R(M,L)=M-"R(M/L%)
2D: df = (5++/5)/4
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Mercaldo, Angles d’Auriac, 1gloi, PRE 69, 056112 (2004)
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‘ Magnetization and fractal properties of the percolating cluster I
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‘ Conclusions |

[1 We have studied the critical properties of the RBPM with and effi cient
new algorithm, which allows to calculate EXACTLY the free energy of

the system

[1 We have analyzed thermal and magnetic properties of different kind of
lattices, with different distribution of disorder in 2D, and also for cubic

lattice with bimodal distribution of disorder in 3D



